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TRAC-MSMR-TD-7-88

THE VALIDITY OF ASSUMPTIONS STUDY

UNDERLYING CURRENT USES OF GIST
LANCHESTER ATTRITION RATES

THE REASON FOR PERFORMING THE STUDY was to show that many of the prevailing
unaerstana1ngs concerning the relationships among the Lanchester, Stochastic
Lanchester, and the General Renewal models of combat are erroneous and to
collect, organize, and reduce to common notation almost all known tabled results
and curves of particular examples.

THE PRINCIPAL RESULTS of this study were:

(1) A1l Lanchester model and Stochastic Lanchester model mean value
equivalent pairs differ for all times except at possible crossing points.
These differences may be very large.

(2) At least for the Square Law, the Lanchester model trajectories are
neither a universal upper or lower bound of the Stochastic Lanchester model
mean value trajectories.

(3) Even near time zero, the Lanchester and Stochastic Lanchester model
mean value trajectories may differ considerably (they do not differ materially
for)the Square Law and the sequence of one-on-one duels version of the Linear
Law).

(4) For the Linear Law, the Square Law, the Mixed Law and the Square
Law with continuous reinforcements there is a Law of Large Numbers on suitably
transformed spaces. However, for untransformed spaces this does not apply,
for it can be shown that as the initial force sizes tend to infinity the
differences between Lanchester model and Stochastic Lanchester model mean
value trajectories tend to zero, or they may even tend to a constant or
infinity.

(5) Blackwell's Theorum does not imply that individual combatants with
general interfiring times tend to have negative exponentially distributed
interfiring times. This is even more strongly the case for terminating
processes.

(6) The Palm-Khintchine Theorem does not imply that superposing a large
number of combatants with general interfiring times will yield a process with
negative exponentially distributed interfiring times. This can only be
approximately correct for large numbers and for very large interfiring time
means. Again, the Theorem is only valid for non-terminating processes.

(7) Nonhomogeneous Poisson processes do not, in general, approximate
general renewal processes.

TRAC Ferm 88 '90 09 28 035




(8) The Stochastic Lanchester model process variances are generally
quite significant and can be important for large force sizes, even near time
zero. In addition, general renewal model process variances are significantly
different that Stochastic Lanchester model process variances.

(9) The other Lanchester model measures, (a) expected number of survivors,
(b) expected time duration of the battle, and (c) probability of winning are
even less reliable predictors than the mean value trace.

(10) The basic assumptions of the Stochastic Lanchester models, as well
as the general renewal model, cannot hold for large numbers of combatants.

THE MAIN ASSUMPTIONS were that:

(a) A1l pre-combat decisions have been made and the battle goes forward
until terminated by the action itself or by tactical decisions.

(b) The true model which is to be approximated is termed a General Renewal
model.

(c) Each marksman fires until he is killed or makes a kill.
(d) The ammunition supply is unlimited.
(e) A1l fire independently.

THE MAJOR RESTRICTION is that the genmeral renewal model is a superposition
of many terminating renewal processes.

THE SCOPE OF THE STUDY is to show that the basic assumptions of current combat
models do not hold for large numbers of combatants.

THE _STUDY OBJECTIVES are to show that many factors cause large scale battles
to be a number of simultaneous and/or sequential smaller scale engagements
and that use of current deterministic Lanchester models is incorrect.

THE BASIC APPROACH is two fold. First the Lanchester model applications are
examined to show fallacies. Second all known tabled results and curves of
particular examples are provided to support the theoretical discussion.

THE STUDY SPONSOR is TRAC-WSMR.

THE STUDY PROPONENT is TRAC-WSMR.

THE ANALYSIS AGENCY is TRAC-WSMR.-
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" NOTATION

Where multiple definitions are given, the context will make clear which
one is used.

A - designation of one side in the combat, or
- the event of a win by side A

A (t) = rv, the number on the A side at time t, in the SL or GR model with
ics (ka »ykbpy) (when k = 1, subscript dropped), jointly distributed
with Bk?t)

a - value of rv, A (L)

ag - the number on side A at the time the A side loses (breaks and runs)

ang - the initial number on side A (at time zero)

B - designation of one side in the combat, or
~ the event of a win by side B

Bk(t) - rv, the number on the B side at time t, in the SL or GR model with
ics (ka »kby) (when k = 1, subscript dropped), jointly distributed
with A (t)

b - value of rv, Bk(L)

be - the number on the B side at the time the B side loses (breaks and runs)

by = the initial number on side B (at time zero)

cov(X,Y) = ccvariance of rvs X,Y

¢ - arhitrary constant

D - the event of a draw

d - arhitrary constant

E[X] - expected value of rv X

P

Ef¥] - estimate of the mean of rv X

e - arhitrary constant

F; =~ complementary distribution function of rv X

f - arbitrary constant
df(t)

] B nmmte—
£'(¢) Jt
fx(x) - pdf of rv X

GR - the general renewal model




gi(t) = average reinforéement rate on the LEE-side, 1 =AorB
ic - initial condition

ift - interfiring time

iid - independent, identically distributed (used with rvs)

k - positive integer, either an index, or
= the number of the transition step in state-space

L - the Lanchester model

E{A(t)], marginal mean value function of A(t)

m,(t)

mp(L) E[B(t)], marginal mean value function of B(t)
m, — portion of force engaged on A side in Springall model

N(t) - rv, number of events which have occurred at time t in a
GR renewal process

n(t) - a value of the rv N(t)

3
~
~
N
n

EIN(L)], mean value function of N(t)

n, — portion of force engaved on B side in Springall model

ned - negative exponentially distributed

P(i) - probability that the i side wins, 1 = A or B

P(i,t) - probability that the i side has won by time t, i = A or B

p - marksman's kill probability or
= B/(a+B)

p(i,t) - pmf of rvs A(L) and B(t) respectively, i = a,b
p(a,LlA) - conditional pmf of rv A(L) siven A wins by time t
p(b,t|B) - condittional pmf of rv B(t) miven B wins by Lime ¢

Lth

Py — the constant kill probability of all contestants on the i— side, i=A or B

pi(t) - time-dependent kill probability of all contestants on the Lﬁh-side,
i=AoraB

pk(a,b,t) = P[Ak(t) = a, Bk(t) = b, 1c(ka0,kbn)] (for k = 1 subscript is
dropped)

pdf - probability density function
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pmf - probability mass function

q =1 - p, marksman's failure probability or
= a/(a+B)

rhs - right hand side of an equation

Ty - fixed individual firing rate for side i, 1 = A or B

r;(t) - time-dependent individual firing rate for side i, i = A or B
ri(a,b,t) - i's general kill rate (other side's attrition rate), i = A or B

r(y) = fz(y)/F;(v), GR model individual 1instantaneous kill rate

rv - random variable

20
Sp(t) =a 1" ap(a,0,t)
a=1

bﬁ
8 7% bp(2,b,t)
b=1
SL - the Stochastic Lanchesler model

SB(L)

TD - rv, time duration of combhat
TD[i - rv, time duration of combhat given a win hy i = A,B or a draw, { = D
t - time
tg - time at which L hattles terminate
ty = time at which iﬁh-renewal evenl occurs
V{A(t)] - variance of the rv A(t)
Wk(t) - rv, superposed interkilling times
X = rv, marksman's {ft
Xi - rv, ift of each member of the Liﬂ side, 1 = A or B
Xk(t) - rv, a transformed version of Ak(L), k= 1,2,00e
x = a value of X (t) or
- a value of X or
~ a value of Xy
X, - a particular value of x
Xy = portion of initial x force 1lnitially engaged in Springall model

x(t) - the number on side A at time t, in the L model

xL(t) = solution to the standard I, Square Law equations with ics (ag,bg)
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Y(t) - rv, marksman's backward recurrence time at time t

Yk(t) ~ a transformed version of Bk(t), k =

y - a value of Y, (t) or

- a value of Y(t)

yy - a particular value of y

1,2,...

Yy - portion of initial y force initially engaged in Springall model

y(L) - the number on side B at time t, in the L model

yL(L) - solution to the standard L Square Law equations with ics (ao,bo)

Z - rv, embedded killing process in the GR marksman model

Aa - change in a
AA(L) = mA(t) - x(t)
AB(L) = mB(L) - y(t)

Ci'i(L).f Ai(t) given a win by i, i = A,B

/
pA/ UA

e

A's {ndividual kill rate (attrition coefficient for B side)

R = pB/uB a B's individual kill rate (attrittion coefficient for A side)

Y = non-comhat attrition coefficient, B side or

- Springall attrition coefficient

S(x-a) - Dirac Delta function == at x = a
=0

§ - a constant,'or
- Springall attrition coefficient

€ - an arbitrary positive constant

;£ - mean of rv X
T\=y-yl
n, - an arbitrary positive constant < 1

)

, elsewhere

§ - the probability that an A side target is not acquired by a B side firer

A = the probability that a B side target {s not acquired by an A side firer

wo=g/p = E[Z]
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Wy — mean value of the ift on side i for the SL or GR model, { = A or B
uk - &P moment about the origin, k = 1,2,...
£ = x - X

€y — an arbitrary positive constant < 1
p - non-combat attrition coefficient, A side

ok - standard ﬂeviation of the losses on the A side in the SL process at time
of the Kt event

D .
-——+ - converges in distribution to
P : sy s
-—-— - converges in probability to
x - cartesizn product

e

- defined as equal to
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PART ONE - THEORY

I. INTRODUCTION

Great emphasis is placed in this document on assumptions, results, and
concepts as they relate to small-to-moderate size battles. The reason for
this is that the basic assumptions of current combat models do not hold for
large numbers of combatants. Terrain compartmentalization, weapon ranges,
terrain obstacles, weather and many other factors cause large scale bhattles ton
be a number of simultaneous and/or sequential smaller scale engagements.

Much of the current effort in weapons systems analysis or in combat
analysis relles on atilization of various deterministic Lanchester (L) models
of combat. It {s important to emphasize at once that the models discussed
here are only coacerned with the progress of the fire-fight once it has
begun. All pre-combat decisions have been made and the battle goes forward
until terminated by the action itself or by tactical decisions (e.g, witLhdraw,
surrender, etc.). This means that optimization techniques which influence
pre—combat tactical declisions or pre-determined decisions to terminate are
excluded. Optimization employs Differential Game Theory, Dynamic Programming,
Game Theory, Control Theory, certain mathematical programming procedures or
possibly other optimization techniques and requires good fire-fight models to
operate on.

The most critical element in fire-fighL analyses is the assiznment of Lhe
attrition coefficients. For example, the Lanchester Square Law differential
equations (see refarence {l0] ) governing the solution are

x'(L) = -Bv, y'(L) = =ax,

where x and y are taken to be the average numbers remaining on the two sides
(A and B) respectively and where @ and B are the B and A sides' attrition
coefficients (A and B8 individual kill rates) respectively. It is customary to
use p,/u, for a, where Pa 1s the individual single round kill probability on
the A side and u, is the individual mean interfiring time on the A side. All
individuals on each side are assumed to he {dentical. A similar set of
assumptions and definitions go with the B side.

A. The Assumptions luplicit ian Using Lanchester's Equations

The analyses in this paper are bhased on the Following additional
assumptionsg, which are explicated for the Square Law €or the sake of specificity.
The details of other models will vary, but the analvsis is similar and the
attrition coefficlents are defined in a manner appropiiate to the model beins
congidered. These assumplions are the basis for using L models mentioned ahonve,

(1) The true model which {s to he approximated, {s termed a General Renewal
(GR) model, and is illustrated in Figure 1 helow. The characteristics of this
model are:

(a) There are initlally, a; on the A side and by on the B side.
(b) Every member of the A side picks a B opponent at random (all are

* Numbers in brackets [ ] cefer to the list of references starting on p. 40.
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visible and in range) and fires with a fixed kill probability py on every
round fired with a general interfiring time (ift), which (s a random
variable(rv) X, with mean u,. (Because a general rv has memory some
particular distribution of éire is required for the GR model to be formulated
mathematically. Different distributions of fire will, in general, give
different results. However, no matter what distribution of fire 1Is assumed in
the GR model, as long as all combatants have a target (even if all are firing
at the same target for example) the GR model reduces to the SL model when XA
and X are assumed negative exponentially distributed (ned). Thus we see that
for L and SL the restriction that all opponents are visible and in range can
be reduced to simply that every firer can see and possibly hit at least one
target at all times.) For the GR model, it must be specified not only how
many opponents are targets but how the fire is distributed over targets. This
makes for possibly many different GR models for every SL and corresponding L
model. To our knowledge this has not been pointed out bhefare.

(c) Each marksman fires until he is killed or makes a kill (at which
point he {mmediately shifts to a new target picked at random and resumes
firing). The ammunition supply is unlimited.

(d) All fire independently.

(e) Similar assumptions apply to the B side.

(€) The battle contlinues until one side is aannihilated.

A side 8 side

RS
A b b

Figure 1. The GR Madel

-The derived quantities of interest are, A(t) and B(t), rvs which are the
remaining numbers on each side with expected values E{A(t)] = m\(t) and
EfB(t)] = mB(t). We note that these are marginal ctvs and means from a joint
distribution on some state-space.

This situation {3 a superposition of many terminating (non-classical)
renewal processes (i.e. each marksman's Eiring process is a renewal process
which terminates hut, in general, not at one of his firing epochs). The
reader 1s reminded that an ordlnary general renewal process is one in which

the times between events are independent, tdentically distributed (ii1d) rvs
and that never terminates.




The only solutions to this model have bheen for the one-on-one due} (see
reference [1]) and for the two-on-one duel (Gafarian and Ancker (1984) ),

(2) Tt is assumed that, if ay and b, are very large, mA(t) and mB(t)
are well approximated by the mean value solutions to the "Stochastic
Lanchester” (SL) equations which were first given a thorough treatment by Snow
(1948). The SL model is exactly the GR model except that ifts are assumed to

be negative exponentially distributed (ned). The ned assumption with its "no
memory” property greatly simplifies the analysils but does not make it trivial.

(3) It is assumed that for large a and hy, the L model solution is a
good approximacion to mA(t) and mB(t) (the mean value time traces) of the SL
model. Lanchester (see reference [10]) first proposed his model in 1914 and
recognized that since it was deterministic and continuous in x,y and that the
real process was stochastic and discrete, L should he considered an
approximation of the stochastic process mean value.

(4) Finally, it is assumed that for larwe a5 and b, the SL and GR models
have negligible variance for much of the battle.

It is noted, parenthetically, that we consider all these models, (L, SL
and GR) to be logicallv subsumed under the title “Lanchester” models. Thus SL
and GR refine the original concepts of Lanchester in the direction of reality
at the obvious cost of greater complexity.

It is this set of assumptions, (1) through (%) ahove, which are
thoroughly examined, particularly the basic premises which purport to justifv
Lhem. The main text (Part One) of this paper will examine all known
theoretical results on this subject and in Part Two we collect, organize and
reduce Lo common notation almost all known tabled results and curves of
particular examples. These support the theoretical discussion.

The theoretical discussion will proceed in reverse order from assumption
(1) backwards to (2) then take up (4) and close hv considaring ather measures

of effectiveness. First, several preliminarv matters will be examined.

B. The Lanchester Square Law

It will he helpful to look at the solution to the Lanchester Square law
differential equations given above. These are the parameteric equations

x(L) = Ay cosh Jag t - /i /a by sinh vot v
/R

y(t) = b, cosh Yaf t - v ay sinh oL,

0

and the phase-space equation (which {s arrived at bv dividing the second
differential equation above {nto the first and solvine),

y(L) = ((a/8) [x*(t) - ajl + n3'/2

all of which are only valid in the intLerval (O,LF) where,

*
References given by name(s) followed by a date are listed {n the Annotated
Bibliography bheginning on p. 42. [f Lhe date is replaced hy an asterisk (*),

the material is new in this work.
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te = (IVGE) tah (B afby), 1€ /B bifay > 1, B uins, uith (b - aéx/B)l/Z aumvivors

= (LVGB) tank (BT by/a), 1€ VBTa b/a <1, A uins, with (ag - b(z)B/a)l/z survivors

0

=@ if v8/a bo/.a\0 = |, which {s a draw with no survivors.

At time t., the combat has finished and one (or both) side(s) is annihilated.
Beyond that time, the only interpretation which can be useful is to assume the
states remain frozen at their te values. This is illustrated in Figure 2 bhelow.

(a) OO r' TS - - '
(b)
!
¢
e e it (ay, 8y)
1‘4 yit) = £(x(t)) !
|| dhase-sogce frace .
! ! a
! ! 2
(o
’ {/ ————— : ‘("\
|
i
/ Jont tracs | OL ,
’ [xi), gin),1}! 3
: .- PR |
- \l(” T\
ytt
G '

(d)

Same as situation ta {(a)

(¢}

Figure 2. Typical Solutions to the Lanchegter Square Law Equatfons




The important point to observe here is that at tg the equations are no
longer valid as they show an upturn on one side (impossible as there are no
teinforcements) and at exactly the same time the other side starts to go
negative (again an obvious impossibility). The only exception to this is when
parity exists (i.e. a, Ya = bo V8 ); then te is infinite and the situation is
as depicted in Figure 2(c).

C. Properties of the Equivalent Stochastic Solutions

It 18 useful to recall some properties of the joint probability mass
function (pmf) of A(t) and B(t) (these apply equally well to the SL or GR
models).

On the time-evolution joint probability state-space diagram (see Figure
3), the only possible states are at the lattice points (the intersections of
the coordinate lines shown). At time t, the probability of being at a general
lattice point (a,b) is designated by p(a,h,t). The states along the a-axis
and the b-axis are absorption states (all opponents have bheen eliminated).
All other states are transient. The state (0,0) can never be occupied. At
time zero, the process is at (ajp,by) with probability one. For

b
(agby)
R ;
Mean volue trace
]
{Qg,B,)
*
(m (1) mg(1))
' o
b
0 00' bo)
\nh(O)Jn.(oD
q. 3 e a

Figure 3. The Time-Evalutfon Jolnt ProbabilitLy State-Space

all t > 0, all allowable states have non-zero probability of occurring. The
point (m (t).mn(t)) is where the mean value function plerces the state-space
plane. n the 1limit as t + =, all transient states have zero probability of
occurring and all the probability mass is located on the a and b axes. This
{s still a joint pmf but, of coucrse, all probabilities are just on the two




axes as shown. The probability the A side has won by time t is just the sum
of all the probabilities on the a—axis, and similarly for the B side. The
total win probabilities are these functions evaluated at t ==

There seems to be some confusion in the literature about the joint pmfs
shown, the marginal pmfs and the conditional absorption pmfs. 1In Figure 3 (at
any time, t) the marginal pmf for A is simply all the probability mass
projected onto the a—axis and similarly for B. Given that A has won, the
conditional pmf is found by dividing each mass poilat on the a-axis by the sum
of the mass points on the a—axis and, similarly for B, Particular confusion
appears to occur in connection with moments of the three possible pmfs (joint,
marginal and conditional) especially in the terminal state (t = ) and it is
important to keep clearly in mind which is intended.

On the time-independent joint probability state-gspace (see Figure 4) the
diagonals labelled k = 1,2,..., (ao+bo-l) contaln the possible states after the
first, second, third, etc. events have occurred. The probability masses located
on each diagonal (k € min (a,,b,)) form a proper pmf and add to one. For k >
min (ao,bo), all absorption probabilities associated with smaller ks must be
included with those on the diagonal to form a proper pmf (see e.q. the broken
line for k = aq in Figure 4.) A random walk may be visualized on this space with
each step either to the left or downward and terminating on the a or h-axis.

b
bo T (o Bo)

0 Y

k= gg+ b=t k=ag k= by

Flgure 4. The Time-Independent doint Probabilitv State-Space

It is important to note here that Lhe concept of “"breakpoint” (i.e.,
defeat before annihilation) complicates the mathemiatics but does not change
the conclusions of the following analyses in any material way. Breakpoints
create absorbing barriers at specific positive values of a and b (af less than
2y and by less than bo). This means that absorption probabilities hecome
significantly large earlier in the battle and thelr role in the differences
hetween L and SL measures of bhattle outcomes is effective earlier.

We now proceed to examine {important theoretical points about the
assumptions outlined above.

II. THE ERROR IN CONSIDERING LANCHESTER'S SOLUTIONS AS AN APPROXIMATION TO
STOCHASTIC LANCHESTER MEAN VALUE FUNCTIONS

Before proceeding with detalls, it is noted that essentially the question
here 13 - how well does the L joint trace (e.g., Figure 2(d)) approximate the
corresponding SL mean value trace of Figure 3} (or equivalently their marginal




or phase-space projections)?

In an {important paper not readily accessible and thus largely unnoticed
Hardeck and Hilden (1967, equatfons (10), p. 5) have shown, when their result
1s expressed in terms of the number of survivors, that

aO bo.
m, (t) = - ¥ N rp(a,b,t) p(a,b,t) = -E[rB(A(t),B(t).t)ll
a=a_+1 b=b_+1
£ £
.0
ap by ’
ma(t) = - ) y ry(a,b,t) pla,b,t) = ~Efr, (A(t),B(t),t)]
a=af+l b=bE+l

for a general SL process (with breakpoints) and where kill rates (rA’fB) also
depend on a and B8 even though this dependency is not explicitly shown. later,
for the same general 5L process with kill rates not a function of time and
where the combat goes to annihilation, Clark (1969 equations (73), (74) and
(75), p. 79) has derived these same expressions except, of course, that the
kill rates were not dependent on time.

Although neither Hardeck and Hilden nor Clark. say so, these expressions
conclusively prove that compared to any equivaleat L formulation, the SL form
will be difterent. :

This comes about bhecause the rizht hand stide (rhs) of equation (1) cannot
be made to look like the rhs of equivalent L. equations. There are two reasons
this cannot be done. They are:

(1) There are no absorption probabilities utilized in the SL formulation for
computing the expected kill rates because kill rates are, hy definition, zero
45 soon as one side Ls annihilated (or reaches i{ts bhreakpoint).

{2) A(t) and B(t) are correlated.
In any possible L model one or the other or both of these facts will creatoe a
difference between the L differential equations and the equivalent SL mean

value different{al equations.

This will he {llustrated bhelow by all particular examples in the
literature known to the authors.

A. The Square law

l. Time-Indepeadent Kill Rates

The first analytic attention to this problem was gl{ven hy Snow (1948),
However, he first gives a more general L problem (see equations (3) and (25)
{n Snow); namely




x'(t) = -px - 3y + gA(t),!

(2)
y'(t) = vy = ax + gg(t), )
and then derives (see p. 24, Snow) the more general SL equivalent
®o
m, (t) = $m, - Bmy + g,(t) +8 El bp(0,b,t),
b=
a 3)
0
mg(t) = <ymg - am, + g (t) +a v ap(a,0,t) ,
a=1

where o and Y are non—-combat attrition coefficients and gA(t) and gB(c) are
reinforcement functions.

It should be observed, in passing, that Tompkins (1953, p. 37, equation
3.2) rederived these results (with ga(t) = gg(t) = 0), apparently bheing
unaware of Snow's priority.

The Square Law equations are easily derived hv setting p =y = g, (t) =
g,{(t) = 0 in equations (2) and (3). Note that the L differential equations
differ from the SL differential equations by the tLerms containing ahbsorption
probabilities. The SL Square Law is also easily derived from equation (1) hv
setting rA(a,b,t) = rA(a,b) = aa and rB(a,h,t) = rB(a,h) = Bb.

We note from the general differential-difference state aquations (Clark
1969, equations (51) through (57) pp. 69,70) with Square Law rates inserted
that the state probabilities have the following properties (see Figure 5):

(1) The absorption probabilities (p(a,0,t), p(h,0,t)) shown in Figure 5(a)
are monotonically increasing functions with value zero and slope zern at t = 0
and asymptotes p(a,0,2) and p(0,b,=). The curvature is initially positive
and changes to negative.

(2) The initial state probability, n(an,bg,t), is a monotonicallv decreasing
function with value one and with slope -(a,a + h.?) at t =0 and is
asymptotic to zero at infinity. The curvalure s always pasitive (see Fiaure

5(b)).

(3) All other state probabilities have values zero and slone zero at time
zero and are asymptotic to zero at infinity. The curvature is initiallv
positive, changes to negative then goes back to positive (see Figure 5(c)).

These facts along with the equations for the mean value functions for the
Square Law show that mA(t) and mB(t) have values ag,hy and slopes -Bh, and
—aa, at t = 0 and are monotonically decreasing to positive asymptotes with
slopes zero at infinity. They also have positive curvature everywhere tending
to zero at infinity.

The Square Law L equations have the same initi{al values and slopes as the
SL mean value functions and have positive curvature (but different from SL)
for positive t < tee It should be noted that i{n comparing all L and SL pairs
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Figure 5. Characteristics of 5L Square Law State Probabilities

of equations, x is always identified with my and v with m,. This is the onlv
rational {interpretation of x and y and has alwavs been so recognized by most
analysts including Lanchester himself 1s mentioned earlier. Also it should be
observed that mA(t), mB(L), x(t) and v(t) will be written as My, Mg, ¥, and v
on the rhs of, all equations for breviiLv, always keeping in mind that they are
functions of time.

With these conventions in mind, it is clear that eaquations (2) and (3)
differ only {n that the rhs of the SL equations contain terms proportional to
the average number of survivors. Clark (1969) has duhbed these the "hias”
terms of the SL equations. This terminology (s dropped in this paper because
hias has a well known, rigorous meaning in statistics which does not applv
here as this paper deals with purely probabilistic models with no question of
statistical sampling involved. The focus here is on the difference in the
solutions to the differentifal equations (i.e. the difference between the L
functions and SL mean value functions).

The principal point to note here i{s that for t > 0N
1l >p(a,0,t) >0 , 0 < acx a >

1> p(0,b,t) >0 , 0<b< b, ,

and these probabilities are monotonically fncreasing (their derivatives are
positive for all t). Thus, although my(t) and x(t), and mp(t) and y(t) start
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at the same point at t = 0 (their initial conditions require '“A(O) = x(0) = a,
and mg(0) = y(0) = by) in general, the L and SL mean value trajectories will
differ for all t (the only exception is that they may cross, and therefore be
equal, at certain specific times).

2. Time-Dependent Kill Rates

Hardeck and Hilden (1967, p. 8) have shown that for time-dependent kill
probabilities p,(t) and pg(t) and firing rates r,(t) and rB(t) that

b
mA(t) = -pB(t)rB(t) [mB - ZO b p(O,b,t)] ,
b=1

d
mi(t) = -p, (Or, ()[m, = 1”& p(a,0,0)] .
a=l

The corresponding L equations again only differ by the terms containing the
absorption probabilities, and the comments in section A,Ll. above apply.

This 1is fundamentally different than the other processes that are
examined here in that the killing process embedded in the firing process is
nonhomogeneous Poisson and is therefore not renewal (i.e., it is
not Lid).

B. The Square Law with Breakpofats

Craig (1975 equétions (101), and (102) pp. 160 and LALl) has shown
b a

0 0
m(t) = Bmy + 8 {1 bpag,b,t) + bg ) pla,bg,t)},
b=bf+l a=af+l
X (4)
a5 h:)
mé(t) = am, +a { E ap(a,bf,t) + A Z p(af,b,t)}.
a=aF+l b=bf+l

The corresponding L equations are Lhe same as the annih{lation case except
that ag and hf occur in the houndary conditions in an obvious way.

Although the sums on the rhs of equations (4) (which produce the L-SL
difterences) are more complicated than for equations (3), the conclusions are
not altered materially. Again we get the simple Square Law by letting ag = hF
= 0.

C. The Linear Law

For the well known L Linear Law given by,

x'(t) = -Bxy, y'(t) = -axy, (5)
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the parametric (time) solutions are, for aa, # Bbo,

(Bbo - aao)ao

x(t) =

b4

8b, exp[(Bbo - aao)c] - aa,

(aa

- Bby)b
Y(‘)’aao 0’0

0 exp[(aa0 - Bbo)t] - BbO ’

and when ®a, = Bbo, x(t) = aO/(aaOt + 1), y(v) = bo/(BbOt + 1). The phase-
space solut?on is

y = (@/8)x + (Bb, - aa;)/8.
ALl these solutions are valid in the interval (0,tg) where t, == . Tf

sa, > Bbo, A wins, x(=) = (aa” - Bbo)/a, y(=») =0,

aa. < Bbo, B wins, x(=)

0 0, y(=) = (BbO - aao)/B,

aay = Bbo, draw with no survivors, x(o) = y(o) = 0,
Clark (1969 equations (80) and (B1) on p. 81) has shown that the equivalenat
SL differential equations are

ml'A(L) = -BE[A(t)B(L)] = ‘BmAmB - B cov[A(L)B(L)], '
(n)

mé(t) = aE[A(t)B(Lt)] = —am,m, - o cov{A(L)B(L)] . ’

It should be noted here that the phase=space solution for equations (5)
derived by dividing the first equatfon by the second equation and solving are
exactly the same as obtained by the same process in equations (h). Other
versions of the Linear Law will give the same phase-space «quations, but
different time traces. In general, replace xy on the rhs of equations (5) by
any general function g(x,y) and a type of Lincar Law will result. The fact
that the I. and SL time~independent phasc=spiace equatlons are exactly the same
(a straight line starting at x(0) = ag, y(0) = b,y and mA(”) = ag, mB(ﬂ) = by
and with the same slopes) does not mean Lhe lines are {dentical., The I lines
terminate either on one of the axes or the orizin, the SL li{nes terminate
at (mA(G),m (»)) which are always positive (see Figure (ha)). Unless
otherwise stated when “"Linear lLaw” 1s used it will mean the versions jylven [n
equations (5) and (6).

Clark did not actually show the second versilon of the chs of equations
(6), but they are obvious from basic probability theory. Again the L and Lhe
SL mean value differential equations differ, this tLime hy the covariance
terms. Thus the SL version could only he the same as the L verston i€ A(t)
and B(t) were Independent or uncorrelated. Since all the p(a,h,t) functlons
with a,b # 0 are known (Clark (1969), p. 102 equation (106)) and
are not of the form p(a,t) p(b,t) (L.e., product nf the marginal
probabilities), then A(t) and B(t) are not independent and therefore A(t) and
B(t) may, but, in general, will not have zero covarfance. Thus although the
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°°= (B/a)bo
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y(t),ma(t)

bo = (¥/B)agG

o)

Qo'(ﬁ/a)bo x(t)'mA“)

(a)

y.mal (9g:bg), (M, (0), mg (1)

SL Mean value Trace

(ag,hg)+(M, (0), mg(O)

(b)
@L Equation Terminal Point
» SL Equation Terminal Point, (mA(CD).mB(G)))

Figure 6. Comparison of L and SL Solutions for the Linear lLaw.

phase=space equations are collinear, the mean value time-triaces for I and SL
dAiffer (see Figure 6b).

Equation (6) may easily be derived from equattons (1) by letting
rA(a,b,t) = rA(a,b) = aab and rB(a,b,L) = rB(a,h) = Babh,

D. Two Special Models

(1) Clark (1969, p. 151) has investigated a special case where
acquisition probabilities are Involved. The L equations are
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x'(t) = By(1-8%) = -8y +8y8™ |

v (7
y'(t) = <ax(1-AY) = —ax +axrn¥ |
and the equivalent SL equations are
mi(e) = 8E[B(t)(1-8)2(E)} o B, + BmBE[eA(t)]
+ 8 covB(e)e?()y | -
mi(e) = <E{ACt)(1-ABE)) < am, + amBE[xB(t))
+ a COV[A(t)AB(t)] ,

where 0 < 8,4 < 1 are target nonacquisition probabilities for A and 3
respectively.

Again, there is a difference In the two versions which is even more
m

: A
pronounced as EIBA) cannot yield 8 . We note that equation (8) may be

obtained from equations (1) by letting ry = aa(l—Ab) net Ty = Bb(1-87),

(2) Springall (1968) has Lhoroughly invectigated a rather complicated
model whose L formulatinn is given bv,

-

u

x'(t) -Bxy - Sv,

4

y'{t)

[}

—axy - vy,

where § and Y are additional fixed attrition coefficients. The initial
numbers engaged are X and Yo which are fractions of the i{nitially available
forces (ao, bO respectively). The remaining forces are In reserve and are
deployed one hy one as the {nitally engaged forces are reduced in such a
manner as to keep the engaged forces at levels <, and v, respectivelv, unti!
32ll reserves are committed and then the battle proceeds clther to annihilation
or to a specified hreakpoint.

The corresponding SL mean value Ffunctions are too complicated to be
reproduced here but examples of the outcome of such battles are ziven in

Part Two and show substantial L function =~ SL mean value Function differences.

E. An Analysis of the L-SL Mean Value Function Difference

Define the L-SL mean value functionn differences Lo be
AA(t) = mA -x , '

9
AB(t) =mp -y . ‘
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l. The Square Law

Craig (1975, p. 68) has shown that for the SL Square Law

8,(c) = f; {SB(T) cosh YaB (t-t) - VB/a S,(t) sinh YaB(t—t)}dr )

AB(t) = f; {SA(T) cosh 7aB (t-t) - /a/B SB(T) sinh /a8 (t-t)}dr
where 0 < ¢ < tes and
10
ag 5( )
SA(t) =a ) ap(a,0,t),
a=1
%9
Sp(t) =8 I o000, J

S (t) and Sp (t) are the terms in the SL differential-difference equations fonr
the ordlnarv Square Law formulation causing L-SL differences. Strictly
speaking, Craig uses the breakpoint model for equations (9) and (10) but this
includes the annihilation model we are considering. Craig investigated (10)
by using various particular values of apys hO' a, B, We shall go a bhit further
here to draw some more general conclusions.

Eauations (10) may easily he rewritten as

AA(L) = {[8 [SB(r) - /§7E-SA(T)] expl YaB (t-t)]dr

+ 5[5 + /B7a 5, ()] exp [- /aB (t-1)ldr} /2
(an

8p(e) = Va78 [ [s,(x) - /&Ta s, ()] exp ViB (L-r)ldT‘

+ fé [SB(T) + /§7;'SA(T)] exp {- 7a8 (t-r)]dt}/2. ]

Now, by the Second Mean Value Theorem equation (11) can he wrilten as
AA(t) = {l-exp(~ /Egt)}fll(c,t) + [z(d,t)}/ZJEE..

Ba(t) = {l-exp(= YaBI}( -1 (c,t) + 1,(d,1)}/28, where

—_— _ (12)
Il(c,t) = [SB(C) - /8/a SA(c)lexp(/ast), ;

[,(d,t) SB(d)+/mSA(d), and

0 <.c,d < t < tge

p(a,0,t) and p(b,0,t) are positive, monntonically increasing functions of t,
as previously mentioned, and thus qA(L) and S (L) are alsn, Tt {s noted that
although QA(t) and Sy (L) are functions of a and B, they are absolutely
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a
0
bounded for any t > O, This comes about from the fact that Z p(a,0,=) = P(A),
b a=1
0
the probability A wins, and Z p(0,b,») = P(B), the probhability B wins.
b=1

Therefore, certainly S,(t) < a ayP(A) and Sg(t) < B byP(B) where P(A) + P(B) = L.
Thus, by faspection of equations (12) and noting that I,(d,t) > 0 for t > 0,

(1) TIf either A, or A is negative at anv time, t, (or any range of
times) then the oéher mist be positive.

(2) TE A, (t) or A_(t) 1is zero for some particular values of a,B,aO,b , and t,
then the oéher must he positive at these points. Such points are crossing
points for the A with the zero value.

(3) Both differences may be positive hut from (l) above they cannot hoth he
negative at the same time. In particular Lhey are bhoth positive for strict L
parity (i.e. ap = by, a = 8).

And from many particular examples in Part Two-I, we have

(4) A, or A, may be negative, positive or zero and these differences can be
as higé as ngout 30 or 40 percent of the initial values.

Furthermore,

(5) Although all the abhove applies for t < Le, In fact, it can he shiown Lhev
are also true for true t > Lee

() Finally, from (1) thru (5) abhove, contrarv Lo some statements {n the
literature (for example, see Farrell (1976, p. 5)), the . equations cannot he

nsed as universal bhounds on the SL mean value functions.

2. The Linear Law

Taylor (1983, equatinn 4.12.24 p. 505) has shown for the Linear Law that
it ts easy to derive the relation A, (t) = (8/a)A_(t) which clearlv indicitoes
that, in this case, the differences are alwavs np the same sivn and a
crossover in one is accompanied by a crossover in Lhe other at exactlv Lhe
same time,

F. The Difference Near Time Zero for Certain Special Cases

Many authors have noted that far the Sauare lLaw (even with variations
such as hreak-points or reinforcements) the I, and SL mean value differential
equations are identical if absorption probahilities are taken to he neligible,
that is set them equal to zero. This only makes sense for very large initial
numbers and for early {n the combhat. Snow (1948) first mentioned this and it
was later exploited by Marshall (1965), Clark (1969) and Koopman (1970).

Grainger (1976, Appendix G, pp. 87 and 88) has shown that for L models
given by

x'(t) = -8xSyd, vi(t) = =axvh, (13)
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where c,d,e,f are positive integers or zero, the corresponding SL mean value
functions (near enough to t=0 so that the absorption probabilities are
negligible) are given by

RO -8E[A%84], m(e) = <E[a%sf]. (14)

In general, A(t) and B(t) are'not independent, and therefore functions of
A(t) and B(t) are not independent and the only values of c,d,e, and f for
which (13) and (l4) coilncide (near t=0, of course) are (c¢=0, d=l), (e=l, d=0)
and (c=0,d=0) for the first equation along with (e=0, f=1), (e=l,f=0) and
(e=0,f=0) for the secoad equation. This gives nine possible comhinations of
which only (a) (c¢=0,d=1,e=1,f=0), the standard Square Law and (bh) (c=d=e=f=0),
the Linear Law model where the battle is a sequence of one-on-one duels, are
interesting situations. For these, the difference is nearly zero in the
neighborhood of t=0. For the general Linear Law case (and other situations)
this indicates that there may be large differences even near time zero. Snow
(1948, p. 25) earlier came to the same conclusion for the Square Law.

G. Summary

Summarizing the major points in this sectioen:

(1) All L-SL mean value equivalent pairs differ for all times except at
possible crossing points. These differences mav he very large.

(2) At least for the Square law, the L trajectories 1ire neither a universal
upper or lower hound of the SL mean value trajectories.

(3) Even near time zero, the L and SL mean valie trajectories mav
differ considerably (they do not differ materiallv for the Sauare Law and the
sequence of one-on-nne duels version nf the Linear Law).

ITI. FALLACIES IN CONTINUOUS STATE-SPACE APPROXIMATIONS FOR THE SL MEAN
VALUE FUNCTION

There have heen several attempts to show that specific SL models converyge
in probahility (in some sense) to L equivalents. This is another effort to
show that L is a good approximation to SL for larse numbers. These allampts
have bheen widely misinterpreted and generally misunderstood. Tt should he
understood that our analyses here reinforce the results in Section TT above.

A. Rigorous Convergence in Probability

Etter (1971) and Karr (1976) have shown rigoronsly that transformed
versions of the SL Linear and Square Laws converge In probabilitv to the I
laws. Karr also shows that transformed Mixed (one side Linear, one side
Square) and Square Law versions with continuous reinforcement also converge in
probability to the corresponding L laws. Their proofs differ (Karr uses
probability arguments and Etter relies on functinn theory) but the
transformations are essentially the same. 1In hoth, a stale space with initial
conditions (1ics) of (ajy,by) is expanded in discrete jumps (keeping the ratio
of 1lcs constant) to ics (gao,an),(3a0,3hn),...,(kan. khy). In Karr, the

rvs A, (t), B,(t), where the subscript k refers to the Kth space in the
k k
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sequence above, are then transformed by
X () = A () /k, Y, (t) =B (£)/k. (15)

This takes the expanded space with lattice points defined on all non-negative
integer pairs (a,b), except (0,0), such that a < ka,, b < kb, and transforms
it to a new (xk’Yk) space with ics (ao,bo) and exacgly the same number of
lattice points as the untransformed space but now they are spaced l/k units
apact in bhoth the x and y directions (see Figure 7). Of course, the mapping
ia (15) brings exactly the probabilities in the untransformed space onto the
corresponding lattice points in the transformed space.

It is very important to ohserve that in any transformation of the type
given by equation (15), {f a comparison is to he made with the corresponding
Lanchester equatfons the same transformations must he made on the [ equatinns
(see Figure 7, in which x; and vy, are the standard L solutions).

Etter's transformation replaces equation (15) by Xk(t) = Ak(L)EO/k,
Yk(t) = Bk(t)nolk, where EO’nO are positive constants < L. He also implies
(correctly) that this transformation is similar to Xk(t) = Ak(t)EO/k(ao + bo),
Yk(t) = Bk(t)no/k(aO + bO)' The corresponding ics on these two differentlyv
transformed spaces are (aOEO,bOnO) and (anEO/(a0 + hO)’ bono/(a0 + hn))
respectively and the lattice cell sizes are En/k by no/k and Eo/k(an + bﬂ) hy
ﬂo/k (a0 + bO)' respectively.

There are no essential differences in all these transformations as thev
all require that the ics on the untransformed spaces <o tn infinity at the
same rate and that the cells in the transformed spaces retain their shapes
(the ratio of the sides are constant) and decrease uniformly. Thus as k + =
the untransformed space increases without limit and the Lransformed space
remains the same size and shape but the numher of lattice points increases
with decreasing distances hetween them, (see Fioure 7).

It should be noted that for some of Xarr's results, he also dilates time
by L/k.

To clarify the situation let us use Lhe Karr transformation directlv on
the Square Law SL state equations. To the hest knowledoe of the anthors this
has not been done in this manner hefore. First we define for “Ovhﬂ and k =
1,2,e00

p(asb,t) = PIA (L) = a, B (L) = h, iclkay,kh )i, \

=0, a> kao or b > kbO ,

=0,a<0o0orb<c0,
(16)

=0, a=0and b =0,

=0, t <0,

=], t =0, a= kao, b = kb, . J
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SL | discrete spaces
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I
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L | continuous spaces

I - expanding the state space
IT - transformation (eauation (13))
[[l - limiting situations as x » ™

Figure 7. Convergence in Probahility for Fverv Fixed Time, t

Thus,

apk(a,b,t)
— " aa[pk(a,b+l,t) - pk(a.b,t)]

+ 8blp (a+1,b,t) = p,(a,b,0)] (e

with 1ic pk(kan,kbn,ﬁ) = 1 (see Clark (1969, p. HA9)). Note that for the
limiting process (where k + ®) only interior points aced he considered and
boundary equatfons are ignored. Using transformatfon equations (15), which
tmply that x = a/k, y = b/k (where x and y are values of X, (t) and Y (L)
respectively), and the mapping is on the probahilities only (i.e. pk(a,b,t) =
pk(x'Yyt))7
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3p, (x,y,t) ) ax[pk(x,yﬂ/k.t) - pk(X.v.t)]
ot 1/k
By[pk(x+l/k,y,t) - pk(x,y,t)l

(18)
M /%

with ic Pk(ao,bo,o) = 1,

The probabilities in equation (18) are on all the lattice points x,v in
the transformed space, where the lattice points are rational number pairs on
the rectangle {[0,301*[0}bol}- However, consider any fixed point (x,v{),
rational or irrational, in the rectangle., Fach is {n some cell hounded bv the
lattice points for every k (see Figure 8 below). The cell sizes are
diminishing as k increases. By replacing

y
(ag,bg)
(x;{-.y) (x,y) .
"¢
(l"y')
(y-)
| CELL
Y :
0o x
Tigure 8. Transformed SL State-=-Space at Saech L

X by <t E, y by yp tn, x ¢ 1/k by g te o+ 1/k, and v + 1l/k bv

yp+n o+ 1/k  equation (18) hecomes

3Pk(xl + .y +0,t) a(xlhi)lpk(xl*‘ﬁ.y,*n + t/k, L) - P (X ¥,V +n,t)]

ot = 1/k

1

B(y, +n)p, (x,+E + L/k, y +n,t) - p (x, ¥, v +,0)]
+ | k71 1/i k71 l (19)

with ic, pk(aO'bO' 0) = l.. Note that 0 € n,£ < 1/k, therefore as
k + = n,§ + 0,

-19-




Now, essentially, Karr and Etter have shown that there exists a
contlinuous function, p, with first derivatives defined everywhere on the
transformed rectangular state space whicn tends to in the limit
as k * =, Taking the limit as k » ®* on both sides of (19) and dropping the
subscripts on x and y yields

3p(%,y,t) (;‘t 9 . gy 20Ky,0) (’a‘y" £) 4 gy p(x,¥,0) ("‘a: &), 20)

In the limiting process, the p functions have gone from a joint

probability mass function on the lattice points to a joint probability density
function (pdf) on the transformed continuous rectangular state-space. Thus,
the initial condition {s given bv,

p(aovboyo) = 6(X - ao) G(Y - (')O), (Zl)

Williams (1963, p. 38), Koopman (1970, p. 870) and Taylor (1972, n. 1-44)
have shown that, using the method of characteristics

dx _dy _dt _dp
By ax -1 0’

the solution is

p(x,y,t) = constant, for v qutisfy(ng,)
x'(L) = By, y'(L) = —ax, with,
x(3) = a v(0) = bO' ’

At this point {t is useful to examine the L equations corresponding Lo
the expanded space SL equations. Thev are

(1)

O'

x'(t) = By, vi(t) = —ax
with ics

x(0) = kao, v(0) = khO'

All points on the k = | curves are transposed upward bv a factor of k.
Corresponding to Xk(t) and Y (t), x and y must he transformed, as follows, to
x = x/k, vy y/k to nbtaln the equations ;riven above wilh X Y replacing

,y and witA ics, xl(O) = ap and yl(O) = bnye So the proper equations to
compare with equation (20) indeed are given by equations (22). FEquations (22)
are the standard L Square Law equations whose well-known solution shall be
called x,(t), yL(t) with xL(o) = ap and yL(O) = bpne This means that at every
t in the {nterval (0, t¢)

p(x,y,t) = 6(x-xL) G(y—yL). (23)
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Thus, it has been shown that Xk(t) converges in distribution to p(x,t) =
8§(x-x.), that is, all the probability mass is concentrated at the point xL(t)
for every t in (0,ty) and similarly

Y, (t) R §Cy=y, ).

Now, when a rv converges in distribution to a constant that implies the
stronger condition that it converges 1in probability to the same constant, see
[11, p. 246]. Therefore, for 0 € t < Les

X, (8 N x (L), I

v () =By () .’

Furthermore, in the transformed space of the rectangle {[0,a ]XIO,hOI},
a statement concerning how expected values E[xk(t)] and E{Y, ()] gehave ¢can be
made. [t comes from a consideration of the convergence in probability
equations (24) which, when written in terms of the definition of convergence
in probability, become (for the A side only)

lim P[IXk(t) - xL(L)l <e)l = 1. (25)

k+o

The interpretation of equation (25) is that in the limlt as k + = Lhe tntal
mass of the sequence of random variables t¥ (L)}  becomes concentrated at
point iL(t). Now, the X, (t) can have pnsit?ve peobahility only at discrete
lattice points 0, l/k, 2/k,..., 3, in the bounded interval (0,a5]. Thus,

as k * ®, any probabhility at these lattice points (unless x (t? happens to he
a lattice point for certain k values) approaches zero. Therefore, the first
moment contribution about zero from any mass at lattice polnts approaches zern
(except, of course, {f x (t) happens to he at 1 lattice point for certain

" ks). Clearly, then there Is a verv Lmportant conclusion in the transformed
space that

Lim E[Xk(t)] = KL(L)- (26)

k+oo

From equation (26) it is clear that E[Xk(t)] = x (t) + e(k), where
lim e(k) = 0. Thus, taking expected values in equation (15) ylelds

k+o

E[Ak(t)]
= xL(t) + e (k)
or
E{Ak(t)l
(o - Lt E‘?i>
L L
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and

E[A (D)]

ii: E_;;TET_ = 1. Similarly for Yk(t),
' . (27)
E(B, (¢)]

ii: k oy (t) =L

Equatioans (24), (26) and (27) are the principal focus of this section.
(24) and (26) are a Law-of-Large-Numbers type resull for the Lanchester Square
Law. It is important to note that these two equations say that the
transformed SL rvs converge in probability to the UL Square Law which is the
limiting mean. Contrary to many statements {n the literature (both explicit
and implicit) this does not say there is convergence of the means ({.e. mean
ST, may not tend to L) in the untransformed space. ALl that can be said ahout
the untranzformed SL sequence is given in equations (27). It has been noted
previously that for A, (t), B%(t) that the corresponding L results are kx;(t)
and kyL(t). Thus, equation (27) says that the ratio of expected values of SL
to corresponding L equations go to a limiting value of 1. This does not
necessarily mean that [E[A, (t)] - kxI(L)] goes Lo zero in the limit. As a
matter of fact, this difference may go to a constant ({ncluding zero) or
infinity and the ratio still go to l. The authors believe that this Impnrtant
distinction is pointed out here for the first time in Lanchester literature.
Nothing that has heen done to date says anything more about the limiting
behavior of the untransformed difference,

Equation (20) has heen derived in several othar less rigorous, intuaitive
ways which seem to have concealed its Lrue messase as given ahove. These

shall now be briefly examined.

B. Diffusion Approximations

Equation (20) can be considered a first order Jdiffusion theory
approximation to the SL Square Law process and it (or {ts implications) have
been arcived at {n several nonrigornus wavs.

1. Taylor's Series Expansions

First 1s the Taylor's series approximation (see [7]). Again the SL
Square Law is used to {llustrate. The notion Involved here is to replace Lhe
discrete functinn given by equation (17) (with k=1), by a continuous function
that goes approximately through aach of the discrete values of p(a,b,t) on the
A,bh axes at each time t. Thus, replacing discrete a,b by continuous x,v
yields

3p(x,v,t)
e = ax(p(x,y+1,t) - p(x,y,t)]
+ By[p(x+l,y,t) - p(x,y,t)] . (28)

Now expand p(x,y+l,t) in a Taylor's series in powers of 1 around y and
p(x+l,y,t) in powers of | around x and retain only the f{rst order Lerms to
get equation (20) immediately.
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The usual explanatfon of when this (i.e. equation (20)) is a fair
approximation to equation (17) is for axt and Byt to be larga. This {s only
speculation based on particular calculations. This really means for
fixed a ,B,t that x and y must * ®, which implies a transformation of the
type previously discussed. Therefore, the usual assumption that this applies
to the untransformed space is not cocrect. As was shown earlier the only
correct conclusion on the untransformed space is given by equation (27).

2. Approximating Differences with Derivatives

Earlier Willard (1962 pp. 31-33) also arrived at equation (20) by a
somewhat more intuitive approach where he divided the first term on the rhs of
equatton (17) by (b+l) - b and the second by (a+l) - a and called these
Ab and da, respectively. He then replaced b + [ by b +4b and a + | by
a + 8a and then assumed a and b were continuous and arrived at equation (20)
by letting 4a, Ab + 0. This, of course, {s reasonable only for large a,b and
again amounts to a mapplng because Aa and Abh are always exactly l and can oaly
be made a truly variable difference by a transformation. His solution {is
arrived at in a different manner but is (as [t should be) equation (23),
However, he incorrectly states that this implies that T. is the limiting
solution to untransformed SL. Agaln we reiterate the only conclusion on the
basic SL equation is given by equation (27).

Koopman (1970, p. 87 . ind Taylor (1972, p. [-42) also used this
technique to get equatinn (20) aund solved it hy the method of characteristics.

Helmbold (1966, pp. 632-635) also uses this technique for discrete state—
space and discret: time parameter models of marksmen versus passive targets
and many versus many battles to get L equations. This involves simultaneously
passing Lo derivatives from differences on both state-space variables and
time. The discrete time parameter In these models comes about because all
contestants on a side fire in volleys at discrete time {ntervals.

3. Time-Independent State-Space Analyses

Williams (1963, p. 31, et. seq.) has written difference equatians on the
moments of the terminal survivor dtstribution as a functlon of the {nitfal
conditions for bhoth the Square Law and the Linear Law. This {s done hv a
riadom walk on the time-independent jolat state-space. For example, he shows
that for the Square Law

BbO aan
B cer—— - e ——————— —_ D
M (30000) = oogp M (agm b))+ e (2, = 1) 29
0" P 0t 2
Lh

where, ¥ 1s the k=— moment Aahout the origin of the marginal disteibution of
the A sihe survivors (i.e., when A wing). He uses the Taylor's series
expansion In powers of one (as explicated earlier in a different context) and
again getatns only first order terms to get the diffusion expression

3uk(ao,b0) auk(aO'bO)
Bb + a3, ————— =0,
0 530 0 ahn
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It is recognized, of course, that this really represents an equation for a
Karr-type transformation and that ay and by should be replaced by variables on
the transformed space. He then solves this to show that Hg = Prob [A wins] = 1,

for all real u,(aj,by) = / a% - (8/a) hg and u, = uz; therefore the varlance
is zero and furthérmore all higher moments around tAe mean are zero. These
aequations are valid only for ao/a > b YB of course. Similar expressions can
be arrived at for the case where B wins. This merely shows that on the
transformed space the terminal distribution is the terminal Lanchester

point as one expects from the Karr-Etter development.

He shows the same thing for the Linear Law.

Covey (1969 p. 31) has shown that for the Linear Law, Am,(t)/Ak = -8/(a+8),
where k is the number of the trangition on the masginal time=independent
state-space points. This is exactly true and shows that the marginal mean
decreases linearly on equally spaced marginal points that lie exactly on the I
Linear Law solution 1in state-space. However, at this point he makes the
grossly Incorrect inference that (for large numbers) the expression ahnve may
be approximated by dm,(t)/dt = -B/(a+8) which is, of course, not true since
it i{mplies jumping from time-independent state-space to the time trace which
is totally unjustified and, of course, dones not give the correct result,

4. Miscellaneous Analyses

(1) Gye and Lewis (1974 pp. 6-7) give a curious twist to all this bv
starting with the usual spurious notion that eaunation (20) applies to the
untransformed space and Lhen applying the fundamental calculus identitv,
dp/dt = 3p/dt + (3p/3ax)(dx/dt) + (3p/3y)(dy/dt) to arrive at the conclusion that
the Square Law Lanchester equations are creally the mndal trace rather than the
expected value trace in the untransformed space. It has been shown earlier that
it is not the expected value trace and this certainly does not establish {t as
the modal trace as equation (20) only applies to the transformed space in Lhe
limit and no meaning can he attached to Lhe expressions dx/dt and dv/dt in the
untransformed space. In the transformed spiace it has been shown that all
probability is located on the lanchester trace and, therefore, all mod;:EE,
etc. are located there and to say that the mode is located there adds nothine.

(2) Farrell (1976, pp. 4-13) has made an attempt at bounding the solutions
to the mean value functions for the SL Square lLaw. In the first part of his
paper he erroneously states that the L equattons are lower bounds on the SL mean
value functions (m,(t) and my(t)) for all ag,b,, t < te, @,B.  This is patentlv
not true from the discussion in Section IT and from numerous counter examples.
He then extends this to the Linear Llaw by some assumptions which are probahlv
true hut leave him with the same defect that vitiated his conclusions in the
Square lLaw. Farrell's argument {s bhased on the faclt that equatfons (2) for the
SL mean values would look exactly like the Lanchester equations if (t were not
for the two nonnegative terms on the right hand sides involving Lhe ahsorption
probahilitied. For any positive t, these prohabilities hecome positive and one
might quickly conclude that the SL solutions are upper bounds to the L survivor
functions. However, hecause of the interactifon hetween the equations of each
palr this conclusion 1s not true; and in fact, there are many counter examples.
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In the next part he attempts to develop upper bounds on these same
functions. Again there is a flaw which vitiates the results. He makes a
transformation which does not require the initial force sizes to go
to infinity at the same rate and thereby destroys the validity of the work.
This can be demonstrated as follows. The Farrell transformation is given as

X(t) = A(t)/a, and Y(t) = B(t)/bo.

When this transformation is applied to equation (17) with k = 1, the result-is

32(;€v,t) = axay[p(x,v + 1/b,t) = p(x,v,0)]

+ Bybo[p(x + l/ao,v.t) - p(x,y,t)]

ay Lplx,y + /by, t) = p(x,v,0)]

by l/hn
by Ip(x + Vag,v,t) - p{x,v,t)]
+ By — 7 .
20 %0
Now let ao/b0 = a constant say, c, and let a and b0 » » (using the same

arguments about cells on the transformed state space as before) the result is

3 :
E(xgvzt) = axe dplx,v,t) o 'y 1 3p(x,v,t) . (30)
L Iv ¢ Ix

Now, as long as c is held fixed this transformation will 3zive Lhe same
results as before because the correspondineg transformed 1. eauations Aare

dy/dt = -acx, dx/de = =2 /e)y
with ics
<(0) = v(0) =1,

which indeed give the correct X YL coordinates for the solution to eauation (30)
which is again p(x,y,t) =6(x = x,) 8(v - v ). However, in all his conclasinns,
Farrell lets one side have 1 Fixek initial Fandition and lets the other sides's ic
+ o, This gives either ¢ = 0 or ¢ = and the whole analvsis collapses,

In fact, if we let a, *+ = then ¢ * = and Lhe Lransition probhabilities
downward will tend to one and leftward to zero and in the limit all nrobabilitv
mass will be concentrated at p(«,0,t), Ffor all t for hoth spaces.

The basic point {s that in any transformation of this tvpe, if the initial
numbers on one side go to infinity both must do so and furthermore hoLh must
do so at the same rate.

IV. PALLACIES IN THE APPROXIMATION OF GENERAL RENEWAL PROCESSES BY
SL_PROCESSES

In all that has been sald up to this point it has heen assumed in the SL model
that all interfiring times X,, Xg are negative exponentiallv distributed (ned)
rvs. This, of course, greiatly simplifies matters as Lhe ned rv has "no memory”.
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Two attempts have been made to justify using the ned SL model as a good
approximation to the general renewal model (i.e. with general ifts, Xp» XB)’ under
certain circumstances. These two arguments are now examined in some detail.

A. The Individual Firer Argument

First, there is the individual firer argument which is widelvy used in this
country and is based (see Bonder and Farrell (1970), pp. 84-86) on BRlackwell's
Theorem in renewal theory. This argument goes as follows: . .

(1) Observe each independent firer on oune side, all with identical
independent ifts which are general rvs, X with mean § and with kill
probability p. Embedded in each of these processes is a killing nrocess with
mean 5/p, which is also iid and therefore renewal theory is applicable.

Set Z/p =u, for simplicity, and call the embedded stochastic process Z(t).

12) Each firer has a sequence of kills which are counted and which is a rv
in time, N(t), the counting distribution of Z(t).

(3) The uncountably infinite ensemhle of all realizations of N(t) has a mean
value function of time, n(t), whose slope » 1/u as t + =,

(4) (3) implies that Z(t) > ned with mean u, which {s not true (as shall he
shown).

(5) (4) implies that a superpositinn of all firers on one side tends to have
ned interkilling times. If (4) is not Lrue, this is, of course, not tLrue.

Figure 9 below shows a few of the uncountabhlv infinite set »f passihle
realizations of N(t). Of course, at everv time L, _the mean is the averaue
nver the entire ensemble and is denoted K[N(UL)] = n(L).

In Figure 10 we graphically show some definitions from ordinarv (non-
terminating) renewal theory and helow are some theorems from ordinarv renewal
theory (see reference [8]):

(1) Lim n(t)/t = L/u (Flementaryv Renewal Theorcem), this means the time
Lre

average (slope of the chord) of the mean value function tends to 1/u.

(2) Lim N(t)/t = l/u with probability one, this means that the time average
t+o

(chord) of every evolutinn tends Lo l/u  (not shown in Figure 10, see Figure 9),

(3) Lim dn(t)/dt = 1/u  (Blackwell's Theorem or the ey Renewal Theorem)
tro

means that the instantaneous rate tends to l/u.

It is (3) above which has been invoked to justifv using pA/u\ for o and
pB/uB for B 1in SL and L approximations to GR.

The fallacies in this assumption are several;
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Figure 1. The Renewal Mean Value Function
(1) even 1if usable {t would only apply after a "lonu™ period of time has

clapsed, and would certainly be erroneous in the early staves hefore “"steady
state” applies,
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(2) u(t) is an ensemble average and therefore rates defined in properties (1)
and (3) above are ensemble rates. Thev are a weighted average of all rates for
certain special mutually exclusive and exhaustive subsets; weighted, as we shall
see, by the probability that the backward recurrence time is some particular
value. Thus, they cannot be used indiscriminately in probability calculations,

(3) none of these theorems apply to terminating processes (which are dealt with
here), and thus none of this implies that the embedded killing process is
tending to ned with mean B. In fact, for the classical terminating process it
is easy to show that lim dn/dt = 0.

tr

To further {lluminate point (2) above, examine what the correct
instantaneous rate is. The first thing to note is that except for ned
interevent (interkilling) times it is not sufficient to simply specify n(t)
for the state. To completely and unambigously define the state, n(t) and the
backward recurrence time (y) must be specified (see Figure 1i1). This is
because, {n general, the system has Markovian “memory” and it does “remember”
the time of the last event.

<y —
T
)
2 —_—
n(t) |
{ - Guna———() I
O _ i
0 t t

F{igure 1l. The Backward Recurrence Time

The rv Y with value v at t, as shown, {3 the necessarv additional
information to completely specify the state. A function of v, r(v) is the
ensemhle rate far the suhset of all realizations with ¥ = v and can bhe nsed
Faor probahility calculations, t.e. r{y)d = Plovent (%i11) in (t,t#a)] whers
r(y) & £ _(v)/F (y) which {s the {nstantaneous rite given Y = vy and is the
weighting factor referred to in (2) above.. Note that if Z is ned then
r(y) = 1/u  and does not depend on v.

B. The Superposition Argument

Now examine the second argument which is called tLhe superposition
irgument and which is widely used {n the Russfan literature, Ventsel (1964),
This argument holls downs Lo the Palm—Khintchine Lheorem, sce reference [9],
which essentially states that if all ay tid interkilling processes, Za» oM sav
the A side, are superposed to form a new interkilling process, wk(L).

then wk(c) + ned with mean /¢, as ag * = if
20
(vy 1} t/u, = ¢, and
=]
-28~-




(2) each Ha > =

where the w,s are the means of the iid ZAs.

In words this simply means that for either side (say the A side) the
superposed embedded killing process tends to ned as the number of simultaneous
firers tend to infinity {f each firer's interkill time mean tends to
infinity. No one has investigated how large ay must bhe and how larwe My must
be for this to be practically useful.

It should also be noted that this theorem applies to non-terminating
processes (no theorem like this for terminating processes is known to the
authors). Indeed, obviouslv, as time prongresses in a terminating situation
the requirement for large numbers will sooner or later be bhadly violated.

It should be noted here that ‘the only free world example of this
misapplication of the Palm-Khintchine Theorem that we have found is in Cho
(1984) where he incorrectly assumes it is applicable in a multiple marksmen
versus multiple passive targets situatinne.

C. PFiring and Killing Rates

Next, an interesting controversy which continues to crop up from time to
time (see reference [4]) is considered. It is the question of the appropriate
measure for the individual firing rate (this is equivalent to the aquestion of
the measure on the individual kill rate as it is casy to prove that in the R
nodel, say for the A side, the individual kill rate is PyCy>» if €y = l/u‘ is
defined as the individual firing rate). The question which has heen raised
is, what is correct, £, = I/E[XA] or ry = E[I/XA!? Bonder [5] originally
proposed that E[I/XA] was the proper rate but Rarfoot [2] made an intunitive
arqument that 1/E[¥X,] {s the correct one and implicitly (though not
explicitlv) Bonder ?6] finally agreed.

The fact is that, in general, as has bheen shown above, neither is correct
and there is no such general fixed rate. However, if one must use sach an
approximation there is no question Lhat 1/E{XA] is the hetter one. Reneowal
Theory (sce above) shows that for the SL nrocess it {s exact and is Lherefore
a counter-example to the original Bonder Lhesis; for the GR process it is
asymptotically correct. From an intuitive vicwpoint what the controversv

bolls down to is the following; suppose one collects n independent interevent
times x,, 1t = 1,2,...n. Should one consider the sample eveal rate to he
n i n P
= ! = 2 3 ¢ t > i ¢ ( ]
n/tglxi ./(igl xt/n) l/h[XA] ot should one consider each l,/vzi Lo he 1

| I/xi)/n = 5777::??

Barfoot pninted out that the first s an evenl average and the second is a
time average and the first (s what we seek. We note, in passing, that for a
positive rv, X, there {s a theorem that E[Ll/X] > |/ E[X] (see reference [lI]},
p. 166). Tt {s time to bury this controversy.

sample of the event rate leading to the sample event rate (i£

D. Further Comments

(1) It is important to note that there are theorems which state that, in
general, even for non-terminating processes, Lhe inLerevent times for
superposed renewal processes are
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(a) not identically distributed and,
(b) are not independent,

both of ‘which are necessary for renewal theory to apply to any process. The
only exception is for ned processes.

(2) 1t should not be implied that if, in either the L or SL formulation, the
kill rates a, B are made functions of time that the resulting situation may
drive these formulations closer to the GR model. What happens 1f this is done
is that in the SL formulation each individual firer's procéess becomes a non-
homogeneous Poisson process which is indeed Markovian but renewal theory does
not apply as the interkill rv depends on time (i.e. they are not ideatically
distributed) and successive interkill times are dependent. Thus the renewal
character of the individual processes of the model are destroyed and although
it is a model of some process it is not necessarily driving SL closer to GR.

The only possible function which might have some merit in this regard is
using dn,(t)/dt for @ and dng(t)/dt for B, Ffor very large ag, bye This has
not been investigated. The notion here {s that for sufficiently large a4, by,
in the superposed process there may he enough bhackward recurrence times of
various sizes and in appropriate proportions to imitate the ensemble mentinned
earlier at every t. Again though, the imitation will surely bhecome poor as
time increases.

(3) A tvpical result from Gafarian and Ancker (1984) is given in Figure 12
which shows a wide discrepancy in comparable L, SL, and GR model mean value
functions. This is a two-on—-one situation with Frlang (2) ifts on the A side
and ned on the B (one) side.

V. THE IMPORTANCE OF PROCESS VARIANCE

Up until now, the focus has been upon the notion that certain combat
processes are adequatelyv described hv their mean value functions and ia
particular, by a deterministic Lanchester approximation to this function.

A. The Initial SL Variance

Implicit in the idea mentinned ahove [s the assumption that (at least for
large numbers on each side) the variance of the process is unimportant. This
assumption is largely based nn Brooks (1963). Brooks has looked at processes
such as ours In state-space and examined them at the lattice points only and
in particular at the lattice pnints where successivelv | event only has
nccurred, 2 events oaly, 3 events onlv, etc. up to the point where the number
€ events (k) is equal to or less Lhan the min (an,bg) (see Figure 4.) This
ensures that not enough events (events heing kills on either side) have
nccurred for an absorption to have occurred. This essentially means verv
early in the combhat. He then defines a concept called “"stochastic
determinism” as the property of a process at the k'" event, that the quantitv,
3, /a,, 1s small for all k < min (a,,b,) and where o, {s Lhe standard
deviation of the losses on the A siae ?this is also the standard deviation of
the survivors).

Next he shows for the SL Linear law (in general, aven Lhough he claims it
for a succession of one-on-one duels only) that ok/an < /2 /an , k € min
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Figure 12. An Example of Comparable 1, SL, and 4R Model Mean Value Functions,

(a(), bO)' which s sufficent for his dafinition of stochastic determinism,
However, examination of the coefficient of variition of the losses Ffor this
case vields Ya/kB, or a minimum value of /1/min (ay,hp) Ya/8 . Clearlv,
the term Ya/B8 can be very large indeed and one wmx(ld surelyv not he justified
in calling this quantity small for all possible parameter values. Or, just
look at_the value of o,, which is /kaB/(a+8) ind which has a maximum of
(/2 /e . Again for laree values of a, and bys this can attain 1 larwe
value since k can equal min (“O’bU)‘

For the Square Law Brook's results are similar (he onlv considers the
case where a = 8).

Clark (1969, pp. 132-133) using a Lechniqne swrested by Snow (1949) has
ziven the varilance for the SL Square Law. The technique solves Lhe variance
equations again using the assumplion that the ahsocption probabhilities are
zern. This is essentially the same idea as Brooks above, hut gives Lhe more
informative time trace (good only for Limes near sero). The equations clearly
indicate that although the percentage losses, for large g and h0 may he
small, the absolute values may be large. This supports the analysis above.

Willis (1982, p. 6) has arrived at exactly Lhe same ordinary differential
equations on the moments as Clark (1969) above. His technique {s Lo use the
differential-difference equation (17) for interior points to obtailn a pactial
differential equation on the joint moment gencrating functinn of the
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process. The moment generating function 1s then expanded in a Taylor's series
in powers of the two transform variables and coefficients of like powers on
each side of the equation are equated to generate the ordinary differential
equations. Since boundary equations are ignored this again implies absorption
probabilities are zero and is good only near time zero. For some models this
technique may be easier than Clark's and Snow's.

Weale (1972 pp. 11-12) reproduces Clark's results (apparently
unknowingly). However, he does gilve an approximate expression based on a
Normal approximation to‘the joint pmf of A(t) and B(t) for the time (measured
from t = 0) during which Clark's expressions are good to any desired degree of
approximation. (The relevant equations are (42), (43) p. 20, (38) and (39) p.
18 and, (19) p. 8 in Weale.) The general idea its illustrated in Fig 13
below. Although Weale does this for a breakpoint analysis, thE annihilation
situation is simpler and illustrates the point. If 1 - exp(-c“/2) is the
joint survival probability (for a 0° + ®) contained inside the contour ¢ at
some particular time for some particu?ar probablility then certainly some of
the remaining probability is in the form of absorption probability on the a
and b axes. Roughly if a total absorption probability {s selected that is not
so "large” as to distort the results then, one minus this probability is the
probability desired inside the contour. Then, by a trial and error procedure
the time at which the desired contour {s tangent to

l

I

|
05 -

Figure 13. Survival Probability Contours

one or both of the axes is determined. In any event the time interval thus
calculated is conservative,.

Perla and Lehoczky (1977 pp. 5-12) derive a diffusion model for the SL
Square Law. In this approximation the mean value Is assumed to be the Xy (t),
y; (t) time-~trace and the pdfs at every time, t, are continous and assumed
Vormal (invoking the Central Limit Theorem). Then the procedure derives the
second moments. The variances are exactly as given by Clark (1969) above.
There is also a covariance determined which Clark could have, but, did not,

give. The Perla and Lehoczky model is only good uatil the absorption
probabilities are significant, and is essentially no different than Clark
(1969). Again they show that early variances may be large.

In general, the use of a continuous state-space implies a limiting
mapping (good only on a tranformed space) as explained earlier. But, for
approximations, these expressions with very large initial numbers are used in
the untransformed state-space. This Is justified by the following reasoning
(see Figure l4 below).
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Figure 14. The Diffusion Approximation

The figure only shows a univariate situation but the reasoning carries
over Lo the hivariate situation. The probability mass (such as at points n,
n+l, n+2) is converted to a rectangular probability density around each mass
point, as shown, with the same heizht, since the intervals are exactly one
unit apart. The histogram thus created is approximated by a curve which
nearly goes through the mass points as shown (it only goes through them
exactly in the limiting transformed space). The mean value function is
approximately the L equation with possibly large vartiance for very large
initial condition and early in the process.

The conclusion is that “stochastic determinism” as defined by Brooks dnes
not ensure that there are not large ahsnlute variations, even in the early
stages of SL models with large initial numbers on each side.

B. The Terminal SL Variance

It can be deduced from Weiss (1963) that for the SL Linear Law the
terminal distribution is asymptotically normal. Also Gve and Lewis (1974)
show asymptotic normality for the terminal distribution of the SL Sauare lLaw.

Gye and Lewis (1974, p. 19) have shown thal for the Snquare Law the
terminal distribution of A side survivors for larve initial numbers is
approximately Normal with a standacd deviation »f about .35 /an if the A side

1/’
has overwhelming superiority and about .37 1, ' for aq = bye In hoth
cases & =8 = |,

Watson (1976) uses Martingale Theory to arrive aL similar terminal
cesults. This {nvolves a transformation of A(L) and B(L) to get a Martinsale
rv whose terminal properties are easily arrived aL. However, the inversion Lo
get terminal properties for A(r) and B(t) is far from simple and it {s not
obvious that there {s any computational gain.

It is clear from many examples that Lerminal variances for initial
conditions of any size are always substantial.

-3~




C. The Transient SL Variance

Taylor (1972), (1-45,46) develops a sccond order diffusion approximation
to the SL Square Law by standard diffusion techniques. This partial
differentl{al equation has unknown coefficieats; however, the following
technique identifies the coefficients.

The procedure i{s the same as given previously starting with equation (28)
and expanding the p(x,v,t)s in powers of one around x and v, except that this
time one keeps second order terms. It is simple to show that one immediately
gets

ap(x,v,t) _ ax 3p(x,v,t) v In(x,v,t)
It v ’ Ix

) 7
ap (x,v,t) 3 p(x,v,t
(ax—u%—\,-—'—+8y ( ] )))
dy 3x

| —

with initial coandition
p(x,v,0) = (x=x4) (y=v,).

This equation has not been solved at this time, and so adds little to our
knowledge. One is tempted to hope that its solution might be a Normal »df
with mean xL(t), yL(t) and variances dnd covarifance as given by Clark (1969)
and Perla and Lehockzy (1977), however, Lhis does not appear to he the case.
In Fact, the process of a Tavlor's expansisn in powers of one scems Lo give
correct results (on a transformed space) for first order (mean value) results
but appears to hreak down for second order results. The second order Lerm

2 . . .
37 /3xdy is always missing and seems necessarv. This mav be due to the Fact
that the term in one squarad {s not small compared to one to the first power.

Farrell (1976, pp. 25, 26) gives a much improved method of estimating
Square Law variances by approximating absorption probabilities and thus allows
the analysis to go beyond the {nitfial stages. He :ives an example where the
variances at any time, t, are substantial.

Clark (1969 pp. 125, 126) has shown bv examples that Square Law varfances
start at zero at time zero and tend to an asvmplLote at time infinitv., In
hetween Lhey are elther montonically L[acreasing or, increasing then
decreasing. Their values are substantial,

D. The GR Variance

Finally, we mention that the only known GR solutinn for more than one-on-
one (for one-on-one, see reference [l]) is a stochastic duel with two versus
one (see Gafarian and Ancker (1984)). A typical result comparing GR with SI
is given in Figure 5. Clearly variation i{s {mportant, and GR variance mav
differ considerably from SL variance.
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Fizure 15. Two-on-Nne Stochastic Duel with Frlany (2) on the
A (Two) Side and Ned on Lhe B Side

This section is concluded with the ohservaLion that it can surely bhe said
that variance is too important to bhe {gnored in anv realistic interpretation
of combat models. This is 1 strong argument for rejecting the notion that
some deterministic approximations of the mean value of the stochastlc process
is sufficient in combat analyses.

Vi. THE ERRORS IN OTHER MEASURES OF EFFECTIVENESS

Up to this point the nrincipal concern has heen with the mean value trace
nf the survivors as a measure of comhat provress. !owever, Lhere are throe
nther measures of combat outcome which are at least crudely nredicted by Lhe L,
equations and which are now examined, especially In regard to thelr
relationship to the corresponding SL measures. No attempt Lo compare with the
equivalent GR measures will be made here. These measures are; expected number
of survivors, expected time-duration of Lhe hattle and the probahility of
winning. These three predictors, with the previously discussed mean value

trace are the only possible direct measures that can he obtained from the L
model.
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A. The Expected number of survivors

1. The Linear Law

Weiss (1963, p. 598) has shown that the conditional SL-L mean value
difference at infinity (i.e. given a win by A) is

N mA(°) (=) _ ag * by -1 8 120, a byl
AAIA( ) = P(AY 1.~ % ag (a + 8/ (a ¥ s) * Py

where a, > (B/a)b,. Thus L underestimates SL as this Is always positive,
The cortesponding ‘B side difference is meaningless since marginal y(e) = 0
and the P(B) for L is also zero and their ratio is indeterminate. Nf course,
by symmetry the same can easily be done for wins hy B when an < (B/G)bo.

However, the marginal difference, which {s the approprlate one Lo
compare, is not so clear cut. For example

a a+B NGE 8}

B B 3y + by-l 8 2, 4 297! 3
AA(W) = mA(m) - x(») = ao( S ) — " (=) - P(B)(aq =< b ),

again with ay > (B/a)b This will he very difficult to explore except hv
particular exampleﬁ wh?gh is shown in Part Two.

2. The Square and Mixed laws

No closed form expression for the SL mean value functions at L = = axist
although useful forms for the marginal distributions of survivors do.

In general, L always predicts the loser with zern expected survivoars and
near parity this can he verv misleading. The discrepancy on the winner's side
can hest he investigated by examples as seen in Part Two.

[t bas heen clearly shown that the L predictor can he extremely
misleading.

B. The Expected Time-Duration of the Battle

Very little has heen done theoretically on Lhis measuce. However, {n
Square Law parity and always in the Linear Law battle t_ + = Ffor L. This is
clearly a useless result as all SL battles have a finite expected time-
duration because,

ao hO
fp(t) = I p'(a,0,t) + T p'(d,b,t)
D a=() h=0

where fTD = a proper pdf of T, (the rv, time-duration of Lhe comhat). The rhs

is, in general, a weighted filnite sum of exponentials and will therefore have
a finfte mean.
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Bowen (1965) has shown that for any SL model, the mean time to the first
kill i{s less than the corresponding L time. While not conclusive concerning
the overall bhattle, this {s still an {nteresting and suggestive result.

Some particular examples have been worked out or ohtained by
simulation. These results are given in Part Two and in general again the L

prediction can be very misleading.

C. The Probability of Winning

1. The Linear Law

Brown (195! and 1955) laid the ground work for the following expression
which was later almost simultaneouslv put in finished form by Brown (1963),
Williams (1963), and Weiss (1963) (mostL explicitly). For SL,

P(A) = by,

Ly /(a+8)Por30)s (R = Tg a48)(30P

where I is the Incomplete Beta Function Ratio. For L

P(A) =1, P(B) = 0, 1y > (B/a)bg,
P(A) = 0, P(B) = 1, ay < (B/adh,,
P(A) = P(B) = 0, P(D) =1, ag (B/a)bn, where P(D) is 1 disastrous

draw. The last expression seems an appropriate interpretation since hoth
sides o to zero survivors at t =« and neither can be said to have won.

. 2 - hi .
From P(A) for SL we ohserve that 1 < I a/(a+) (hﬂ,nn) < 1 and that for

fixed by and ay it is monotonically (ncreasing as a/(a#l) increases or for
fixed a,8,b it {s also monotonfcallv increasing with a_ ., Figure 14 is a
typical comparison with L.

P(A)

05F--=-=~-

009

{ L J/L
1
Bbg
Figure lh. Probability of Winning for L and SL
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Note that this general curve has not been shown going through P(A) = 0.5
at aa /Bbo = ] because this will only occur for strict SL parity (il.e.
ag = by, @ = B), otherwise it may cross either above or below depending on
the exact values of the parameters. Such curves are obtained by fixing aj,, b
and either @ or 8 and varying the other. It is striking that L can imply P(A?
is zero when it is > 1/2 or P(A) is | when it is less that 1/2. The P(B)
situation is, of course symmetrical.

2. The Square Law

The SL probability of winning is also given in Brown (1951, 1955 and,
1963) and Isbell and Marlow (1956) as a complicated sum. Although, in fact,
it does have quite similar properties to the Linear Law (as shown hy many
examples in Part Two) it is very difficult to observe {ts properties
theoretically.

Brown (1951, 1955 and 1963) has derived useful approximations for bhoth
the SL Linear and the Square lLaws which are Normal probhability integrals,
derived asymptotically but which are remarkably good for small numbers. Kisi
(1966) has derived the same expression for the Square Law only by a simple
transformation of the basic differential-difference equation which captures
second order differences (i.e., differences of differences) and then replaces
differences by derivatives.

It can be said eenerally, that near paritv the [ predictor for winning
can be extremely misleading. In Part Two this is illustrated with particular
examples.

VII. CONCLUSIONS
In the following we summarize the maian poilnts in Part One:

(1) All L-SL mean value equivalent pairs differ (possibly coasiderablv) for
all times except at crossing points.

(2) At least for the Square Law, the I, trajeclorios are neither a aniversal
upper or lower hound on the SL mean value Lrajectories.

(3) Even near Lime zern, the L and SL mean value trajectories mav differ
considerably (they do not differ materially for the Square Law and the
sequence of one-—on-one duels version of the ILinear Law.)

(4) For the Linear Law, the Square Law, the Mixeu lLaw and the Square law
with continuous reinforcements Lhere is a law of larire numbhers on suitably
transformed spaces. However on untransformed spaces one can only say
lim E[Ak(t)]/k xL(t) = 1, lim E[Bk(t)]/k yL(L) = . This does not

k> h-»oo
necessartlz mean that as the initial force sizes tend to i{nfinity the

differences between L and SL mean value trajectories tend to zero. They mav
even tend to a constant or infinfity.

(5) Blackwell's Theorem does not imply that tndividual combatants (and thus

their superposition) with general ifts tend to have ned tfts (even after a
long time). This is even more strongly the case for terminating processes.
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(6) The Palm-Khintchine Theorem does not imply that superposing a large
number of combatants with general ifts will yield a process with ned {fts.
This can only be approximately correct for large numbers and for very large
ift means. Again the theorem is only valid for non-terminating processes.

(7) Nonhomogeneous Poisson processes do not, in general, approximate general
renewal processes.

(8) The SL process varfances are Jenerally quite significant and can he
important for large force sizes, even near time zero. 1In addition, GR process’
variances are significantly different than SL process variances.

(9) The other L measures, (a) expected number of survivors, (b) expected
time duration of the hattle and (c) nrobability of winning are even less
reliable predictors than the mean value trace.

(10) Finally, we emphasize that the hasic assumptions af the SL (and GR for
that matter) models simply can not hold for larze aumbers of combatants.
Terraln compartmentalization, weapon ranges, terrain obstacles, wealher and
many other factors (including tactical ones) cause large scale battles to bhe a
set of sequential and/or parallel small scale engagements. The effect of Lhis
point {s illustrated in Figure 17, where one large battle with 96 on each side
{s compared to 15 simultaneous battles of A on each side. The Lanchestar
solution is identical for hoth cases but the SL soliation is quite different

A OR B SIDE

W

o

& 8ol 4g 2200, p, =.BOO, r,=.004, ;=0
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Figure 17. A Comparison of One Large Battle with Several
Simultaneous Smaller Battles
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for the two cases with the terminal number of survivors in the simultaneous
small battles being 80.4Z greater than the one large battle. Further results
(Ancker and Gafarian (*)) are contained in Section 6, Part Twr. Th. ., the
development of small scale GR models and their integration into l4rge models
is intrinsically necessary. The effect of this fractionation on overall
measures of outcomes is unknown. For a discussion of current thinking on this
matter in England and the United States see reference [3].

VIII. RECOMMENDATIONS

Both analytical (mathematical) and simulation research is needed and is
recommended on the following topics on GR models:

(1) Solutions for moderale size an and hy.

(2) Good approximations for moderate size ZI and bO'

(3) Superposition of terminating renewal processes (this would probahly he
best started on non-terminating processes and proceed towards terminating

processes later).

(4) The possibility of using dn(t)/dt as the instantaneous riate for moderate
numbers of superposed iid GR processes.

(5) MNumerical technlques to solve the complicated analvtical models.

(5) In simulations, variance rednction techniques on non-classical
terminating processes. -

(7) Determination of error bounds on approximations.

(8) Integration of small (or moderate) size hattle models into large models
of combat.
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PART TWO - FIGURES AND TABLES FROM THE LITERATURE

0. INTRODUCTION

In this Part we have included almost all the calculated and estimated
(usually by simulation) results that we have found in the literature and which
are catalogued under AE in the Annotated Bibliography. Considerahle effort
has been expended in redrawing all figures and retyping all tables in common
notation. These have been carefully organized and then cross referenced
between the Annotated Bibliography and the figures and tables of Part Two and
between the sections within Part Two so that working analysts may readily
locate all the details they mrv be interested in.

The only omitted material is from Craig (1975) pages 71-81, 83, 85-91,
94, 96, and 98-126, and is a numher of figures where Square Law L functions
and SL mean value functions are plotted in the manner of the figures in
Section I following. However, in the Craig plots (all for aanihilation
situations) all functions have been normalized by dividing them by their
initial values. This has, in essence, divided the SL-L difference by their
common initial values. For breakpoint situations, the normalizing factors
were ag - x(Lf) and by - y(tf). At first glance these appear to bhe
appropriate transformations. In fact, they ohscure the ahsolute magnitude of
the difference (by greatly reducing them). Consequently, we have chosen to
omit these figures as otherwise it would require that they be recalculated and
replotted on an uanormalized basis, which did not appear to be worth the
effort.

In many figures and tibles from original sources, deterministic values
are not given. We have calculated them and included the results to make

comparisons possible. Any errors are strictly our responsibilitv.

A. The Significance of Parity

The parameters for stochastic paritv (which we define to he when P(A) =
P(B)) will not have the same values as they do for L parity (except for strict
parity). Still when one is far from L paritv the fire=fights will he
decisively lopsided in favor of the stronger side in hoth models and not he
very interesting. This fact is especially importint since I, parity is easv to
calculate and SL parity is usually verv difficult to determine. Strict paritv

is defined for the Square and Linear Laws as 1 = 3, Ay = by and ag = b oand

for the Mixed Law (with A linear and B squaare) as a = 8, a4, = hé , aud A = hﬁ .
Non—-strict L parity is as fo}lows: for the Linear Law, 4(1” - af) = B(h) - ho)s
for the Square Law, G(ag - A§)’= 3(b3 - b?); and for Lhe Mixed Law (A

Linear), a(ao - af) = B(bo - bfL

B. Draws

There are some examples in what follows of models where draws are
possible outcomes. This matter was not discussed in Part One and deserves
some attention here. Let us suppose that each s{de has a breakpoint (for
sake of generality) given by Ap and be respectively. Whichever side reaches
it's casnalty breakpolnt flrst will surrender or hreak and run. Now, let us
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further suppose that each side has a point at which it's casualties are such
that it no longer has the capability of winning but are not so large as to
have reached it's breakpoint. Consequently, it would disengage if the other
side would also retire. We shall denote these points by a new notation, ap
and . The time-independent joilat probability state space for stochastic
models of Figure 4 is reproduced below as Figure 18 without showing all the
lattice points which are the possible system states. What we do show are all
the subsets of states which have common possible outcomes in the breakpoint

and draw situation. .

- 8 win§
I

. . .
Bcon win| Either can win

or a drawl or a
will occur: draw will occur

A can win or @
draw will occur

Figure 18. The Stochastic Representation of draws

All shaded areas and the three cocners with large dots contain states which
cAannoat occur.

The corresponding deterministic sitnation is shown in Fionre 19, the
phase-space of Figure 2(d).

|~ Phase-Space
-1~ Traces

1A wins
i

Figure 19. The Determiunistic Representation of Nraws.
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Any phase-space trace lyiag between the curves shown will surely end in a

draw; a trace below both will result in an A win and one above both will be a

B win.

C. Special Models

There is no dicusssion in Part One of two models which are in the
Annotated Bibliography and whose examples are in this part.

1. The Weale Special Model

This model differs from the others in that attrition is of the
form a = a(c, + ¢,b) and B = h(c, + ¢,a), where Cy» Co, Cq, and ¢, are
constant attrition coefficients.” This model contains as special cases the
Linear, Square and Mixed Laws.

2. The Clark LORSUM Model

This model is considerablv more complicated than anv of the others.
Brieflyv, it involves the following complicitions:

(1) Several different vroups on each side with individual sroup
characteristics.

(2) Dirferent kill rates bv each uroup asainst everyv apposing JTroup.
4 { A0 !

{3) A rate at which each aroup detects oach opposing uroup.

(4) A time delav from detection to wemisition for all o each sides This
called 4 shift coefficient.

(95) Acquisition autoeorrelation between anits internal o each groao.
These factors are displaved in Taible [-7 for particnlar examples,  The detai
ot this model are considerably more itavolved that is discussed above, bat we

shall not elaborate further hero.

I. THE DIFFERENCE BETWEEN SL MEAN VALUE FUNCTIONS AND L FUNCTIONS

ALl fienres and tables in this section displiv the di!forence except
Fables [-2, [-3(a), [-h and Fiaure =18, which Jdo not have the detorministis
informatinn. They are incladed For complotoness,

Additional information on the diffoerences 5 aiven ia Fignres VI=3
throngh VI-12,

Parity may bhe obscrved in Figures I-1(b), -3 (solid curves onlv),
[-5(c),(d), 1-21(b), [-24(c), 125(a),(c), (), [=26(e) (d), VI=-3 .nd VI-4 whi
strict parity occurs in Figures I-t(a),(s), (-4, (-9, and [-12. There are
scattered parity points in varfouas tables but being at isolated time points
they are of little interest. As ohserved ecarlier, at or near parity L is
particularly poor as an approximation to SL.
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An important point about breakpoints is illustrated in Figures I-3, I-4,
and I-5. That is, for L the breakpoint curves are identical with the non-
breakpoint curves until the breakpoints are reached, at which point the L
curves are horizontal straight lines. However, the SL breakpoint curves are
higher than their non-breakpoint counterparts and depart from the L curves
much earlier in time. Contrary to some speculation, breakpoints do not
improve the L approximation to SL mean value functions; the effect of
absorption probabilities simply occurs earlier.

In Figures I-19 through I-26 we sec a two versus one model illustrate the
differences in L, SL, and GR mean value functions. One striking point is that
for the same value of @ = ( p, / uA) various values of P, greatly change the
GR curve. In other words, combining the parameters Pa and UA can be grossly
inadequate.

The other points mentioned on pires 15 and lo are well illustrated by
these results, and they emphasize thac:

(1) L functions are wenerally inadequate as an approximation to SL mean
value functions, especially in the most interesting cascs where one side does

not have a lopsided preponderance of force.

(2) SL mean value functions are venerally inadequate as an approximation to
their GR equivalents (at least for the small fire=fights so far considered).
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CLARK (1969) SQUARE LAW p.119
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8 =004
] ., 26
[
«®
2 lL =0
>
@
2
o (Yorm ()
s | MMy
e .,
< AA(l)
(R or
x{t) or y(t) agn
1 [ ! —
oo 200 400 800 800 1,000
Time tn Jetonds
JAMES (1981) SQUARE LAW p.42
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JAMES (1981) SQUARE LAW p.42
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Figure I-1.
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A SURVIYORS
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10 <4

8 SURVIVORS
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JAMES (1981) SQUARE LAW p.52
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10 < JAMES (1981) SQUARE LAW p.23
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JAMES (1981) SQUARE LAW p.21
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Figure I-4
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A SUAVIVORS
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15

JAMES (1981) SQUARE LAW p.39
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Figure I-6
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A or B SURVIVORS

A or 8 SUARVIVORS

19

JAMES (1981) SQUARE LAW p.48
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8 SURVIVORS
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JAMES (1981) SQUARE LAW p.40
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mA(ll or m, (1)

malt) of mg(t)
x{t) or yl(t)

x(t) or ylt)

200

KARR (1975a) SQUARE LAW p.7
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Figure I-9
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GYE AND LEWIS (1976) p.118

SQUARE LAW

3 = 23, by = 32

aF =bf =0
a=8
L POINT L POINT
TIME ma(t), mg(t) WITH SAME X TiME na(t), mg(t) WITH SAME X
3.1 22, 32 22, 31.3 46.9 10, 25 10, 24.4
9.7 éo. 30 20, 29.9 55.2 8, 24 3, 23.6
16.5 18, 29 18, 28.6 63.9 6, 24 6, 23.0
23.7 16, 28 16, 27.4 72.6 4, 23 4, 22.6
31.1 14, 27 14, 26.3 31l.6 2, 23 2, 22.3
38.9 12, 26 12, 25.3
CLARK /1969) p.122
SQUARE LAW )
A = be = 0
3 |be | @ 8 t mp(t) | my(t) | x(t) | y(t) |Ap(t) [A4g(t)
6 6 .no1 .004 27s. 1.059 | 5.134 7.000 | 5.195 1.159 -.061
6 6 .0015 .0N4 291, 1.133 4.640 | 0,900 | 4.740 1 -.100
6 6 002 .004 112, 1.227 4.102 | 0.000 | 4.°30 1.227 -.138
6 6 .No4 .004 2500. 1.929 1.929 1.000 0.100 1.329 1.929
3 3 .001 .004 275. 1.226 6.863 | 0.000 | 6.922 1.226 -.,059
3 8 .N015 .004 291. 1.314 6.213 0.000 | 6.320 1.314 -.107
8 8 .002 .N04 312, 1.426 5.492 0.000 5 623 1.426 -.136
3 .008 .004 2500. 2.407 2.407 | 0.000 | 0.000 2.407 2.407
12 6 .001 .004 | 2500. 3.297 | 1.969 | 0.081 | 0.040 31.216 1.929
12 .0015 .004 493, 65.474 1.339 | 6.920 | 0.000 -.346 1.339
12 6 .002 .004 312, 8.160 1.17§ B8.480 | 0.000 -.320 1.176
12 6 .004 .004 137. ] 10.275] 1,060 | 10.390] 0.000 -.115 1.060

Table 1-1.

-h6-

(a)

(b)




e e e = g —
e e —————— e -

PERLA AND LEHOCZKY (1977) p.27

SQUARE_LAW

af = be = 0

a=8=.05

t =15
ma(t) wg(t)

{ag.bg) s 0 [S-0(/S s o {S-01/5
(20,20) 9.48 (.041) 9.45 .0032 9.40 (.002) 9.45 .0053
125,25) 11.85 (.069) | 11.81 .0038 11.87 {.061) }11.81 .0051
; /30, 30) 13.21 (.041) | 14.17 .0028 14.16 (.011) | 14.17 .0007
110, 40) 18.98 (.190) | 18.89 0047 18.93 (.069) | 18.89 .0021
(50,50} 23.64 (.118) | 23.62 .0008 23.58 (.251) | 23.62 .0017

viations of the S escimaces.

i D 2 Perla & Lehoczky 1977} Ji1ffuston approximation.
{

3 = Simulation, 6000 replications. Vumbers in parentheses are standard de-

PERLA AND LEMOCKZY (1977 p. 28

SQUARE LAW

ag = be = Q
a®-075 g = .03

t =10
(‘7 ma(t) my(t)
[ (ag.bg) s 0 [$-D1/S s 0 |s-01/5
r
; (50,20) | 40.18 (.003) | 40.16 .0005 6.78 (.056) | 6.72 .0088
(75,30) | 60.32 (.029) | 60.24 L0013 10.08 (.926) | 10.09 .0010
1100,40) | 80.34 (.066) | 80.32 .0002 13.45 (.155) | 13.45 .0000
{125,50) | 100.32 (.030) | 100.41]  .0009 16.36 (.089) | 16.81 .0030
(250,100} | 200.96 (.149} | 200.81] .0007 33.70 (.008) | 33.62 .0024

viations of the S estimates.

0 = Perla & Lehoczky /(1977) diffusion approximacion.

S = Simulation, 6000 replicacions. Numders (n parencheses are standard Je-

Table I-2.
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KARR (1975a) pp.6,13

SQUARE LAW
ag - bf =0
Wi b% | ™ g PA | P t m(t) | mg(t)
200 | 200 | 0.1} 0.1 0.5 1 0.5 | 0.625 194.40 | 193.78
1.25 187.28 | 187.56
2.5 176.34 | 176.80
5.0 155.86 | 155.68
200 | 200 | 0.5 ] 0.5 0.5 { 0.5} 0.5 176.00 | 176.12
1.0 155.62 | 156.44
2.0 122.10 { 121.16
4.0 73.04 73.54
150 | 100 | 0.1 ] 0.225} 0.5 | 0.5] 1.25 136.38 90.98
2.5 122.54 82.88
5.0 103.80 63.46
200 | 200 | 0.4 | 0.5 0.5 ] 0.5 1.25 145.60 | 155.98
2.5 101.76 | 127.22
5.0 34.84 94 .02
KARR (1975a) pp.9,13
SQUARE LAW
g = ISG. bo = 100
aF=bf=0
PA = pg = 0.5
FA* .1, rg =~ 225
mp(t), -x(t) m(t)  y(t)
t [ 7141 —— | —— t — [
A(t) (g || =(t) b [bo)
1.25 136.38 0.909 (.952) 90.98 0.910 (.952)
2.50 122.54 0.817 (.837) 82.88 0.829 (.837)
5.00 103.80 0.692 (.692) 68.46 0.685 (.692)
Simulation results.
Table 1-3
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CLARK (1769) p.153

SQUARE AW ‘WITH STOCHASTIC ACQUISITION)

afg =bf=0
3 | bo e 8 t ma(t) | mg(t) | x(t) | y(t) | aalt) |ag(t)
€ 6 .00! .004 | 5000, 030 ) 4.672 1 0.n00 | 4.729 .030 -.057
i 2 5 .001s .004 | S000. 128 [ 3,987 | 0.00G | 4.048 .128 -.061
; 35 } 5 .nae .004 | 5000. J312 1 3.338 | 0.000 ) 3.332 312 .006
{ 5 i 5 § .304 .004 | 5000. 1.489 | 1.489 .316 .316 | -1.173 1.173
? 2 5 9 ; a0t .04 | S300, .013 1 65.30% | N.000 | 6.383 013 -.079
2 3 i .001s .004 1 5000, .085 5.390 | 0.000 | S5.504 .085 - 114
3 1 .noz .304 3000. 264 | 4.3486 | 0.000 | 4.568 .264 -.082
; ? | 3 .04 .1704 | 5000. 1.808 1.ang .323 .323 1.485 1.485
: 2 5 .00! .004 | 5000. .961 2.700 003§ 2.571 .958 .129
2 5 .0o1s .04 | 5000. 2.528 1.504 .108 .608 2.120 .896
2 5 002 .004 | 5000. | 4.154 A 3.364 .N09 .790 .785
2 6 .004 .004 | S53900. | 8.027 .061 | 8.268 | 0.000 -.241 .061
R U 1 -
Asquistition Probabilities ~ (p = q = .85).
Table 1-4.
-69~
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CLARK (1969) LINEAR LAW p.117
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Figure [-10.
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KARR (1975b) LINEAR LAW p.10
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Figure I-12.
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MORSE AND KIMBALL (1956} o.68
LINEAR LW

3 * 5, by = 3
af 2 by = O

a=8

1+

3 [ ~]

—f—

: o
—
~N
L]
o
w
o

3
»

5.9 /4.5 (4.0 |3.5 |3.06 |2.72 | 2.48 {2.367

1
1.5 | 1.06 0.72 | 0.48 |0.367
a.5 3 3] (51)

w
ra
<

= 3.3 )

|

[ou
‘o
[
w
Y
(=
w
[

k = number of kills.

prg) = - 29/128) = ).2266.

a l.62l.
Pra) s (39/128) 2 2.7714

If rhe A's win, the expected numdac 3£ A survivors
a 3.061.

i
1
|
i
i L€ =he 3's win, the expected number of B survivors

CLARK 11969) p.121

LINEAR LAW

ag » b * 0
s s t m(t) | my(t) | x(t) | p(r) |aalt) [as(t)
.001 | .004 | 900. .028 ) 4.506 | 0.000 | 4.500 028 .006
.0ts | 004 |1075, 107 13,790 | 0,700 | 1.750 10?7 .080
002 | .004 (1275, 269 | 3.138 { 9.000 | 3.300 .69 138 (b)
.008 | 004 [2%00. [1.350 [ 1.350f 493 f 393 ) 1.7 | 1287
.001 | .004 | 400. .020 | 6.705 | 1.200 | £.000 .20 .005
L0015 | .00¢ | 350, .107 | s.080 | 708 | 5.002 102 .15
.002 | .004 |100O. 214 | a.107 | 0000 | 4,900 .21 .107
.004 | 004 [2500. |1.571 | 1.5 099 | 099 | 1.472 | 1.472
.01 | .00¢ { 8s0. 374 | 3.094 | 0.000 | 3.000 .378 .094
6 |.0015 {.004 [1500. |t.22t [ 1.958 { 0.000 | 1.500 | 1.221 .458
6 |.002 |.o004 f2s00. |2.35t ) t.175 ] (197 | .098 | 2.15¢ | 1.077
6 |.008 ).004 | 175, |6.149 | .149 | 6.000 | 0.000 .149 .149
Table [-5.
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KARR (1975b) p.6

LINEAR LAW (SIMULATION)

3 = 50, bg = 60
Ta ® rg = 0.1, Pa = Pg = 0.5

a = bf =0
t m,(t) mg(t)
0.000 50.00 60.00
1.000 10.60 19.86
2.000 4.96 14.72
3.000 3.18 13.04
4.000 2.44 11.62
0.000 50.00 60.00
0.100 38.56 43.18
0.200 30.02 41.52
0.300 25.18 35.84
0.400 22.24 30.14
0.500 18.48 28.10
0.000 50.00 60.00
0.010 48,32 58.58
0.020 47.08 57.18
0.030 45,98 56.04
0.040 44,78 55.22
0.050 43,58 53.02
0.060 42.54 51.72
0.070 41.20 51.74
0.080 39.98 50.20
0.090 39.20 49.42
0.100 38.76 47.54
0.000 50.00 50.00
0.001 49.84 59.80
0.002 49.76 59.68
0.003 49,64 59.62
0.004 49.40 59.44
0.005 49,34 59.36
0.006 49.18 59.16
0.007 48.82 58.88
0.008 48.80 58.74
0.009 48.84 58.76
0.010 48.72 58.58

Table I-6
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m, (t) or x(t)

Yoi

2

SPRINGALL (1968) MODEL p.164

.°=4o, uozao, m2=29. n2 =20, a=0.10,

820.1, y =0.2, $=0.1 )

04
15 T
Phase 1
10
5
ol
0.0 0.1

TIME

SPRINGALL (1968) MODEL p.165

=250, b_ =40, =50, =40, a=1, 8=1, =10, §=10
\ 8,35 o m, ", a 8=1, Y L)

(b)

0 .® .0) .o. .05 .06 .07 .08 .09 .0 .11 .12 .1) .l .15
TIME

Figure I-13.
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- m— e

] LORSUM MODEL

CLARK (1982) pp.157,158

This table defines the parameters for following
Figures [-14 through [-17 and Table I-8,

! CASE INPUT DATA
e ———————
e
! 1 Initial A Group 1 Weapons 2
Initial A Group 2 Weapons 10
; Initial B8 Group 1 Weapons 1
‘ Initial B Group 2 Weapons 5
i
. Rate A Group 1 Weapons Kill Acquired B Group 1 Weapons .101
: Rate A Group 1 Weapons Kill Acquired B Group 2 Weapons .no2
) Rate A Group 2 Weapons Kill Acquired B Group 1 Weapons .0002 |
' Rate A Group 2 Weapons Kill Acquired B Group 2 Weapons .0004 .
Rate B Group 1 Weapons Kill Acquired A Group 1 Weapans .004 |
. ! Rate B Group 1 Weapans Kill Acquired A Group 2 Weapons .008
' j Rate B Group 2 Weapons Kill Acquired A Group 1 Weapons .0008
: | Rate B Group 2 Weapons Kill Acquired A Group 2 Weapons .0016:
, A Shift Coefficient 10.0
B Shift Coefficient 12.0
Rate an A Detects a Firing B .03
Rate a B Detects a Firing A L
Rate an A Detects a Silent B .015
Rate a B8 Detects a Silent A .025
' Rate an A Loses a Detected 8B .01
' Rate a B Loses a Detected A .01
1
j A Observer Autocorrelation 0.0
{ B8 Observer Autocorrelation 0.0
\ 2 Initial A's are Reduced by 50% in Each Group
‘ 3 Each A Kill Rate is Reduced by 25%
_ 4 Rate A Detects a Firing B .nos
Rate B Detects a Firing A .00s
Rate A Detects a Silent B .004 .
J Rate B Detects a Silent A .004 |
L5 Observer Autocorrelations .25 ;
6 Detection Rates Equal to Case 4, Observer Autocorrelations .5
18 - 6H: Same as | - 6 with all qroup 1°'s eliminated.
Table [-7
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CLARK (1982) p.160
LORASUM MODEL
CASE 1

2.00

1.80 -

memeanas STOCHASTIC

A
e DETVERMINISTIC
0.80 4
0.40 4
‘~-~--—-------~-
6.00 r - Y ¥ -
0.00 400.0 800.0 1200.0 1600.0 2000.0
Tive
CLARK (1982) p.181
10.00 LORSUM MODEL
CASE 1

8.00+ memaerw= STOCHNASTIC

\\ e DETERMINISTIC
6.00 ~

‘2(”
4.00+
2.00~
0.00 Jr Y T T T BER
0.00 400.0 800.0 1200.0 1000.0 2000.0
TIime
Figure I-14
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CLARK (1982) p.162
LORSUM MODEL
CASE 1

=eremas STOCHASTIC
o QETERMINISTIC

o TR
T - - - - - o

5.00

4.00

J.OOJ

1.00+4

0.00

T T T T 1

400.0  800.0 1200.0 1800.0 2000.0
Timg
CLARK (1982) p.183

LORSUM MODEL
CASE 1

\\ - = 3TOCHASTIC
N ——— DETERMINISTIC

-
‘-‘-
u-_‘__

0.00

T T
400.0 900.0 1200.0 1600.0 2000.0
TIME

Figure I-15.
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CLARK (1982) p.164
LORSUM MODEL

100 CASE 2
0.80
0.80
——ww STOCHASTIC {a)

Se——— DETERMINISTIC

0.00 200.0 400.0 600.0 800.0 1000.0
TiME

CLARK (1982) p.16s

LORSUM MODEL
CASE 2

3.00

(b)

e emen $STOCHASTIC

2.00 e DETERMINISTIC
1.00
~
-~

\“--~

0.00 Y T P—
0.00 200.0 400.0 600.0 800.0 1000.0

TiMe

Figure I-16.
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CLARK (1982) p.166

LORSUM MODEL
CASE 2

- em e STOCHASTIC

0.98 A —— DETERMINISTIC

0.90 «
m"(() (a)
0.88 4
0.80 4
\‘-
0.7% ———r———--
0.00 200.0 400.0 600.0 800.0 1000.0
TIME
CLARK {(1982) p.167
LORSUM MODEL
CASE 2
5.20 1
o e $TOCNASTIC
4.80+ S —— QETERMINISTIC
\\
\\
\‘~~
‘~-~—
4.40 4 ---~—-
(b
mazll)
4.00
3.60 ~
3.20 T T T T A
0.00 200.0 400.0 €00.0 800.0 1000.0
TIMR
Figure I-17
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CLARK (1982) pp.168-169

LORSUM MODEL

t = 500

A GROUP 1 SURVIVORS

B GROUP 1 SURVIVORS

DETERMINISTIC DETERMINISTIC
CASE STOCHASTIC ERROR STOCHASTIC ERROR
1 .5046 -.0828 4712 .2290
2 .1126 -.0879 .7659 .1298
3 .4311 -.2494 .5678 .2184
4 1.0179 .0351 .7018 .0977
5 .5274 -.2515 .4689 .2290
6 1.1318 -.0011 .6932 .1011
A GROUP 2 SURVIVORS B GROUP 2 SURVIVORS
DETERMINISTIC DETERMINISTIC
CASE STOCHASTIC ERROR STOCHASTIC ERROR
1 7.217 .602 3.535 -2.757
2 1.202 - .654 4.525 - .850
3 6.948 .626 3.979 -2.083
4 6.292 .425 3.463 -2.366
5 7.183 .814 3.571 -2.573
b 6.824 .247 3.787 -2.092
IH 6.807 2.152 3.492 -3.490
2H 1.757 1.084 4.379 -3.309
3H 6.535 2.080 3.827 -3.792
4H 6.960 1.507 3.837 -3.402
SH 6.694 2.216 3.489 -3.487
6H 7.499 1.014 4.103 -3.283
Table 1-8
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CHO (1984) SQUARE LAW (GR) p.48

l‘flun ve. ’o passive targets, unitorm (a,1) interkill times
b o = 00, curves from theory, other curves from simulation

{40 replications)
30~

el
»
o
it
12

(a)

(b)

Figure I-18
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II. THE EXPECTED NUMBER OF TERMINAL SURVIVORS

This section is closely related to Section I and in fact is exactly the
situation examined there at t+= ounly. It is singled out for particular
attention because significant discrepancies between terminal L and SL (or GR)
mean values should be especially important to decision-makers and other users.

Most of the figures and tables in Section I and Figures VI-3 through VI-
12 have been carried far enough in time so that terminal differences are very
closely approximated. This is true except for the following:

(1) Where there is no deteministic information given; i.e. Figure I-8 and
Tables I-2, I-3(a) and I-6.

(2) Where time is not carried far enough; i.e. Figures I-9 and T-12 and
Table I-3(b).

In addition to the parity cases noted in Section I we also have parity
here in Figures II-2 and [I-3. Again we note that x(=) = y(») = Q.

The {nadequacies of L and SL models as previously noted on pages 15 and
16 and in Part Two, Section 1 are even more apparent here.
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JAMES (1981) SQUARE LAW p.28
STRICT L PARITY
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Figure I1-2
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SPRINGALL (1%68) p.49
SQUARE L
2210, 48, 81,801
ageb, 00
RE. x(=) =60, y{=) = 0
aoRb 1 2 3 s 7 TOTAL [ H
¢ ’ L I L AU o
9la,0,®) | 0.01299 |0.0269¢ |0.06335 |0.06327 10.08696 }0.11258 [0.13¢04 [0.13972 | 0.11486 | 008668 | 0.79136 (5.217
ple.0,= | 0.01299 |0.02¢98 {0.03442 [0.03962 {0.03852 |0.03163 |0.01932 | 0.00676 0.20864 | .89
KIS (1965) p.52
SQUARE L
RCE BT ]
a0
KX )
a0 =)
(V] 3 2 ] PA) EA(=)]A)
s
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WEISS (1963) LINEAR LAW p.601

ur—
T
=
ol
=
E_ St
<
W 4}
3
ol
T Tt v s e o me @ et
‘o
CONDITIONAL MEANS
Figure T1I-4
KISI (1965) p.52
LINEAR LAW
ao = 3' bO =2
af = bf =Q
a=8
p(a,0,=)
LAW 3 2 1 P(A) E[A(=)[A]
sL 1 1 3
Linear ry ry 16 0.688 2.09
L Linear 1.0 . 1.0
Table II-3
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SPRINGALL (196} p.158

SPRINGALL MODEL

W *S. 209,830 820, y*2.0

dp = b, 20

tre

"] ExpeCTED MER OF B SIRYIVORS, b | EXPECTED MMBER OF A SURYIVORS,
By « a os) OETEAMINISTIC STOCHASTIC DETERMINISTIC STOOHASTIC
5 0.88567 2.500 N 0 0.203
10 0,97080 5.587 5.854 0 0.059
3] 0.99763 11,782 12.003 0 0.005
30 0.99979 17.937 18.117 [} 0.001
0 0.99998 24.112 24.353° 0 0.000
S0 1.00000 30.287 30.529 0 0.000
60 1.00000 36.462 16.706 Q 0.000
SPRINGALL {1968) p.159
SPRINGALL MODEL
%4 50,8 4, @ 50, a" g1, y=g-10
ERPECTED MUBER OF SURVIVORS my(e)
& = bf P(8} DETERMINISTIC STOCHASTIC

Q . 14455 0 0.708

1 7.14180 ! 1.680

2 0.13%00 2 2.656

4 Q.13321 4 4,608

6 g.12ns & 6.560

3 0.12082 3 8.512

10 0.1t420 0 10.465

20 0.07620 20 20.24]

i 0.03071 30 30.066

— —k

SPRINGALL 1968) o.177

SPRINGALL MODEL

4 60, by * 60,0 09,8¢°10,7v+20,8-2.0

PR PR

8, ond a8 (=) (=) | ale) | yi=)
10 731188 | 11.68936 | o 9.64
15 1.22422 | 11.84208 | o 9.85
20 7.1809 (1191737 | q 9.9%
10 7.14259 L ty.98ert | o | i0.0a
0 12821 120106 | 0 ] 10,07
50 122z 2.9 | o | in.on
60 j razes (1202212 | o0 | ro.08
Table [1-4




III. THE EXPECTED TIME-DURATION OF THE COMBAT

The following do not give L termination times for comparison with E[TD]
but are included for completeness; Tables III-2 and III-3.

Certain figures in Section I contain information on time-duration and
should be consulted in connection with the material given here. They are
Figures I-1(b), (c) (these are parity cases where te * ), 1I-2, 1-6, I-7, and
I-8 which are all Square Law. )

The following figures clearly iandicate the effect of breakpoints when
compared to annihilation models: Figures [II-l(b), TII-2(b), [II-3(a), [II-4
and Table III-1(b). The breakpoints lower the time-duration of the fire-fight
substantially as one would expect.

Nowhere is-the variance of Tp explicitly computed except in Tables II[-
1(b), (c). The 5th and 95th percentiles are shown in Table [II-1(b).
However, these tables and an inspection of all the probability distribution
functions (fairly flat) and density functions (rather spread out) demonstrate
that V[T,] is indeed substantial. This fact and the large discrepancies
between h[TD] and Lg which can be extremely large near parity (where
t. +* @) lead to the conclusion that tg is an extremely poor approximation to
the measure, expected time-duration.

Finally, Figures III-l and II[-2 not only show plots of the distribution
function of TD but also the marginal functions P[TD < t, A wins] and P[”[‘D < e,
B wins]. We point out that these latter Lwo are not conditionals (some of
which are shown in Tables [II-2 and [II-3(a)), but are improper distribhution
functions with the property that as t + = these function tend to

ao bO
1 p(a,0,®) = P(A) and | p(0,b,®) = P(B). This is related to the Fact that
a=af b=bE

the expression at the hottom of page 36 is the time derivative of the
identity;
FTD(t) = P[TD <] = P[TD < t, A wins] + P[TD <L, B wins]

3 ?O
= 1 p(a,0,t) + ) p(0,b,1)
a=af h=hf

which, of course, only iavolves the absorption probabilities.
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. 0.44

1.0 1
0.8 4

0.6 <

JAMES (1981) SQUARE LAW p.53

TOTAL

/' 0.518 (t=®)
0.488 (1= ) (a)

. A VICTORY

T T T T T
S 6 7 8 9 10 1 12

JAMES (1981) SQUARE LAW p.54

d=0.15 f=0.32 TOTAL

1.019 0,=12 bgy =8
49 =4, b, =2
0.8 (b)
0.6 - (L Equiv=5.82)
8 VICTORY
0.511 (t=)
1oT 0.488 (t= 0}
0.4 AV ORY
0.2
4] ng Y —
[+] 1 2 3 4 S [} 7 8

Figure I1I-1.
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0.2

JAMES (1981) SQUARE LAW p.33

=18
b, =8
° TOTAL
1.0 - a=0.10
4~ 8 VicToRY 0841 (t=m )
- . 0.459 (t=m) (a)
A VICTORY
T L LN T
9 10 11 12
JAMES (1981) p.34
SQUARE LAW TOTAL
a=0.08 8=0.50
0, =18 b, =58
o' =8, b, =1
(b)
V=7, B VICTORY
MEAN (LEQUI 5) 0.528 (t=)
0.472 (t=co)
A VICTORY
' T T T T T .
1 2 3 4 5 L 7 8 ¢ 1o
TIME
Figure III-2
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JAMES (1981) SQUARE LAW p.24

i 50%
0.3 o, =10
MEAN (L fv=6
(Lequiv ) by =10
a,=b,=
e a= §=0.2
0-2" ( )
10% 50% a
MEAN (Lequiv= )
0.1 al'—.-b'::o
95%

-
9 10 11 12
TIME

JAMES (1981) SQUARE LAW p.25

0.24
MFAN (Lequiv=7) a, = b' =7
0.154

a= f8=0.05

(b)

0.05

TIME

Figure II 1-3.
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WEALE (1976) pp.43-45

SQUARE LAW (WITH

DRAWS)

ao=b = 10

0
3 =2, be =

3

a=0.16, 8 = 0.08
P(A) = 0.77630301, P(B) = 0.03090876, P(D) = 0.19278822

-104-

DRAWS OCCUR IF:
a=2,b<6or
b=3,acx<5
E(Tp) = 5.35 E(Tp|al = 4.58 | E[Tp|g] = 6.21 | E[Tp|p] = 8.31
T Frp fio | Fioja | fToja | FToie | fToje | Frojo | fTofo
0.00 | 0.00000 | 0.000 | 0.00000 | 0.000 | 0.00000 | 0.000 | 0.00000 | 0.000
2.00 | 0.03466 | 0.073 | 0.04445 | 0.093 | 0.00419 | 0.012 | 0.00010 | 0.000
4.00 {0.33787 | 0.193 | 0.42414 | 0.23¢ | 0.14074 | 0.140 | 0.02210 | 0.035
6.00 | 0.67320 | 0.130 | 0.79953 | 0.127 | 0.50572 | 0.192 | 0.19136 | 0.134
8.00 | 0.86077 | 0.063 | 0.95205 | 0.038 | 0.81202 | 0.107 | 0.50103 | 0.157
10.00 | 0.94620 | 0.027 | 0.99118 | 0.008 | 0.94756 | 0.037 | 0.76484 | 0.102
12.00 | 0.98115 | 0.010 | 0.99866 | 0.001 | 0.98824 | 0.009 | 0.90952 | 0.047
14.00 | 0.99400 | 0.004 | 0.99982 | 0.000 | 0.99774 | 0.002 | 0.96995 | 0.017
16.00 | 0.99825 | 0.001 | 0.99998 { 0.000 | 0.99961 | 0.000 | 0.99104 | 0.006
13.00 | 0.99952 | 0.000 | 1.00000 { 0.000 | 0.99994 | 0.000 | 0.99754 | 0.002
20.00 | 0.99988 | 0.000 | 1.00000 | 0.000 | 0.99999 | 0.000 | 0.99936 | 0.000
22.00 | 0.99997 | 0.000 | 1.00000 | 0.000 | 1.00000 | C.000 | 0.99984 | 0.000
24.00 | 0.99999 | 0.000 | 1.00000 | 0.000 | 1.00000 | 0.000 | 0.99996 | 0.000
26.00 | 1.00000 | 0.000 | 1.00000 | 0.000 | 1.00000 | 0.000 | 0.99999 | 0.000
28.00 | 1.00000 | 0.000 | 1.00000 | 0.000 | 1.00000 | 0.000 | 1.00000 | 0.000
30.00 | 1.00000 | 0.000 | 1.00000 | 0.000 | 1.00000 | 0.000 | 1.00000 | 0.000
Table III-2.




SPRINGALL (1968) MODEL p.161

1.0
0.8 "30' b,‘-’o.
a.6
efo]
0.4 “-,_~_~__‘--—_~———-.-‘ (a)
0.2
0.0 —
0 10 20 0 L0 sa 60
‘o or b,
SPRINGALL (1968) MODEL p.162
0.12 ,-L
5.10
0.08
e[ ol
9.06 8,25, b, =5,
t ] ®)
0.Ck t
AJ
° 10 20 0 [¥e] 50 &
LIPN or by

Figure 111-4.
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WEALE (1976) 20.15,16,17
SPECIAL MoDEL

.U - bﬂ = 10
apobp e
P(A) = 99280858, P(8) = .00001826, P(0) = .00717316

ORAMS OCOR IF:
as2,b<60r
beld ac<s
ATTRITTION FUNCTIONS:

A Side = a{0.05 *+ 0.05))
8 Sfde = b(0.025 + 0.005a)

eltpl ~ 2.02 €(Tolal = 2.00 | E[Tp|g] = 3.43 | E(Tpjo] = 4.44

T o | *To | Froia | Toja | Frois | fTols | Frojo | "Tojo
0.00 { 0. 0.000 | 9.00000 } 0.000 | 0.00000 | 0.000 ) 0.00000 | 0.000
1.00 | 0.08261 | 0.314 | 0.08320 | 0.316 | 0.00235 | 0.015 | 0.00009 | 0.001
2.00 | 0.56262 | 0.471 | 0.56656 | 0.474 | 0.09754 | 0.210 | 0.01865 | 0.059
3.00 ) 0.87641 | 0.172 | 0.88158 | 0.171 | 0.40279 | 0.353 | 0.16248 | 0.231
4.00 | 0.97035 | 0.043 | 0.97420 | 0.041 | 0.71639 | 0.250 | 0.43818 | 0.290
5.00 [ 0.99267 | 0.0l10 { 0.99483 | 0.008 | 0.89422 | 0.114 | 0.69471 | 6.211 (a)
6.00 [ 0.99797 | 0.002 | 0.99900 | 0.002 | 0.96638 | 0.041 | 0.85568 | 0.115
7.00 | 0.99936 | 0.001 { 0.99981 | 0.000 | 0.99038 } C.012 | 0.93695 | 0.054
8,00 | 0.99977 | 0.000 | 0.99996 | 0.000 | 0.99743 | 0.003 | 0.97350 | 0.023
9.00 | 0.99991 | 0.000 ) 0.99999 | 0.000 | 0.99934 | 0.001 | 0.98904 | 0.010
10.00 | 0.99997 { 0.000 | 1.00000 | 0.000 | 0.99984 | 0.000 | 0.99549 | Q.004
11.00 | 0.99999 | 0.000 | 1.00000 | 0.000 | 0.99996 | 0.000 | 0.99814 | 0.002
12,00 | 0.99999 | 0.000 | 1.00000 | 0.000 | 0.99999 | 0.000 | 0.9992¢ | 0.001
13.00 | 1.00000 | 0,000 | 1.00000 | 0.000 | 1.00000 | 0.000 | 0.99969 | 0.000
14.00 | 1.00000 { 0.000 | 1.00000 | 0.000 | 1.00000 | 0.000 | 0.99987 | 0.000 }-
15.00 | :.00000 { 0.000 | 1.00000 { 0.000 { 1.00000 | 0.000 | 0.99995 | 0.000
16.00 | 1.00000 | 0.000 | 1.00000 | 0.000 | 1.00000 | 0.000 | 0.99998 | 0.000

SPRINGALL (1968) B.177
SPRINGALL MODEL

3 * 60, bg * 60, q = 0.9, 8~ 1.0, y » 2.0, § = 2.0

a4 oby o5
™, and n, €(Ty]
10 0.45087
N 1.21268
20 0.15671
30 0.10796 (b)
49 0.09529
50 0.09165
60 0.09091

Table III-3.
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IV. THE PROBABILITY OF WINNING

We note again that, for L parity, the L prediction is that both sides are
annihilated or both sides reach their breakpoints. In either case, neither
side wins and therefore L predicts P(A) = P(B) = O. At parity, the L
probabilities have a discontinuity and make a jump with a predicted
probability of zero at the parity point. At the corresponding SL point, the
win probabilities are P(A) = P(B) = 1/2 for strict L parity and will be some
value different from 1/2 for non-strict L partity. 1In the latter case, it may
even be on the wrong side of 1/2, e.g., SL P(A) may be greater than 1/2 when L
.P(A) = 0. The jump points are shown as dashed vertical lines on almost all
curves or are otherwise indicated on some curves and all tables except Figure
IV-15 and Table IV-10 where no L information is given.

Some other sections in Part Two contain figures and tables on the
probability of winning and should be consultad. These are:

(1) The Square Law; Figures I-l(b), (c¢), 1-2, I-6, I-7, I-8, [II-l, [LI-2
(in these latter two figures FT (=) are P(A), P(B) on the A, B victory curves
) D
respectively), V-12, V-13, V-14 and Tables TI-l, TI-2, and V-9.

(2) The Square Law with draws; Table [I[I-2

(3) The Linear Law; Tables I-5(a) and T1I[-3.

(4) The Springall Model; Tables I[I-4(¢c), V-6 and V-l1.
(5) The Weale Special Model; Table [1[-3(a) and V-10.

Some of these contain L comparisions and some do not. Usually, the L
predictions are obvious or easily determined from the discussion in Part One.

The probability of winning fi{gures all are shown as continuous functions
of the parameters agq, bO (also ag and hF in some cases), a, B8 (which mav be
exhibited in terms o? Pys Pg, u,, and B_o)e IF 4g and by are fixed, and
if a (or B) or some function of @ and B (s varied the curves are genuinely
continuous. However, this 1is the case only for Figures IV-ll, IV-10(b)
(showing slope discontinuities which it should not) and IV-17. All others
should have values at certain discontinuous points only. In other words, if
ag or by s the variable, the P(A) and P(B) curves should bhe discontinuous,
This can be somewhat misleading and care should be taken in reading the
curves. Figure IV-2 illustrates this point. a and B are fixed, a¢ = be = 0
and the curve parameters are a5 + b, L[f, for example, an + by = E, Ag can
only assume values 0,1,2,3,4, and 5 while the corresponding va?ues of bO are
5,4,3,2,1, and 0. P(B) only has non-zero values at abscissa points 0O, 1/16,
4/9, 9/4, 4 and » . Interestingly, there is only one value to Lhe righL of
the jump point. Also one has to be curious about the curve whose parameter is
ag + by = 0 as this implies neither side has any combatants! TIf the authors
used some limiting process to obtain this curve or assumed ag, by continuous
for the others, they do not say so.

In any event, the presented material contains a wealth of evidence that L
is a very poor predictor of the SL probability of winning.
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GYE & LEWIS (1974, 1976) SQUARE LAW p.21(1974)
P.117 (1976)
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Figure IV-1.
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LEE and WANNASILPA (1972) p.32

SQUARE LAW:

1.0 r——@ | a=$=0.05

P(B)

30

Figure IV-2
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LEE and WANNASILPA (1972) p.30

SQUARE LAW:
a=0.1, B8=0.3

¢ =by =0
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Figure TV-5.
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P(A)

LEE (1979) SQUARE LAW p.12

1.0
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Figure [V-9

-1l6-




~NA)

PLA)

LEE (1979) SQUARE LAW p.11
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DATHE (1967) SQUARE LAW p.21, Fig 5
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LEE (1979) p.10

SQUARE LAW
af-bf-o
SL L
o/8 a, b P(A) P(A)
1.0 1.0 7.0 .0000248 0
1.0 2.0 6.0 .0081507 0
1.0 3.0 5.0 .1126240 0
1.0 4.0 4.0 .5000000 0
1.0 5.0 3.9 .8873759 L
1.0 6.0 2.0 .9938492 i
1.0 7.0 1.0 .9999751 !
2.0 1.0 7.0 .0007054 Q
2.0 2.0 6.0 .0003894 0
2.0 3.0 5.0 .0187682 3
2.0 3.0 4.0 .8083533 1
2.0 5.0 3.0 .9812317 1
2.0 6.0 2.0 .9996105 1
2.0 7.0 1.0 .9992945 L
3.0 1.0 7.0 .0036160 o
3.0 2.0 6.0 0000602 0
3.0 3.0 5.0 0050362 1
3.0 4.0 4.0 .9146103 1
3.0 5.0 3.0 .9949637 1
1.0 6.0 2.0 .9999397 l
1.0 7.0 1.0 .9963839 !
KARR (1976) p.22
SQUARE_LAW
ag = b¢ = 0
P(A)
St L
B/a | a=S50; beS0O[a=200;0b=200|a=500;0b=500 |All Cases
.80 7 .91 1 1
.90 .74 .79 .38 1
.95 .54 .68 73 1
1.05 .42 .34 .26 0
1.10 .23 .25 .11 0
1.20 .20 .08 0 0

Table IV-2

(a)

()




LEE AND WANNAS[LPA ([972}) 0.25

SQUARE_Law
af = by = 0
INTIAL
FORCES P(8)
4 by [Be .05, ae.05 |82.1,a°.3 [8+.05 an.2
1 3 2.9583 - -
2 § 0.9918 0.87179 0.64318
3 9 0.3990 0.92326 0.84266
: 12 0.9998 0.95268 0.38234
5 15 0.9999 0.97028 0.91067
§ 18 1.0 0.98110 0.93148
? a1 1.0 0.38787 0.94703
a 2 1.9 0.99219 9.95881
9 27 1.0 0.99554 0.96804
10 10 1.0 0.98188
0 60 1.9 ;
L for P(B) 1.0 1.0 1.0
(a)
Table 1IV-3
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GYE AND LEWIS (1976) p. 114

SQUARE LAW
af = by = O
a_ 1
8° %
P(8)

g by = | 2 3 4 5

1 U.962 3.999 1.000 1.000

2 0.890 0.995 1.000 1.000

3 0.795 0.984 0.°49 1.000

] 0.645 0.962 0.997 ..000

5 4.571 0.926 0.993 1.000

6 | n.460 | o0.076 | 0.9 | 0.999 !

7 1. 360 0.913 0.970 0.997

3 0.233 | 0.7 0.947 0.993 |

9 0.200 0.656 0.916 0.987 :

1 0.143 a.871 0.87% 0.7

1 1).u99 1.486 0.326 0.962 |

12 0.067 0.405 0.768 1.941

13 0.044 0.130 4.703 0.914 |

14 1,028 | -0.264 U.634 J.8719 !

15 0.018 0.207 0.563 0.338

™ J.0Ul n.160 0.492 0.790

L7 9.006 0.121 0.423 0.737

14 0.004 J.090 0.359 0.679

1y 0.002 0.066 0.300 0.619

20 0.001 0.047 0.246 0.557
21 0.001 0.033 0.200 | 0.495
22 0.000 0.023 0.160 0.434
26 - - - - 0.496
NUTE. Above the hedvy lines (=) for L, P(B; =

1.3; and helow the lines, P(B) for L = 0.

(b)




KARR 71975a} p.21

SQUARE L AW

Pa = = 0.5
A, = .‘6740,8!) = .79bg
P(8) clmputed on 56 Replications

v T H
:
b pBero

4 o "a s PAT AL P(8)
50 €n 1 1. 1.9 0.16
50 50 1 1.2 1.0 n.2s
50 50 1 1.3 1.3 n.3s
50 50 1 1.F 1.6 n.58
50 50 ! 1.3 1.3 n.st

50 'S 1 )1 0,225 9

S I ! N 1.4 1
50 5 a3 1,675 0.01
39 'S ' 0.4 0.9 0.n5
59 5 ! .5 1125 n.2
50 s : 1.4 1.1 0.48
50 S ' Al 1.57¢ B
50 5 ! n3 1o n.49
53 e ' A oc 1.35

50 0 ! 1 1.4 b]
50 1N ' N a2
79 190 ; 1. o 2.9
50 bb! ' Y L€ N
sy | ! V.2 10 s e
51 R ' V6 . ?
& " 1T R L]
57 190 ' 3 14 v.q9
5 (50 ! 3.1 1.1 ~ 03
50 150 ! 3.0 ACL] N.08
30 ) ' SR 1w ST
50 159 ! 1.1 AR 2.9
50 150 ! 1,13 1.6 3.4
53 150 1 3,18 e 2,10
) 150 1 BIRL: IR K] L
sr 150 ! n.17 1,63 T A%
S0 150 1 9.13 1 N
51 150 ! 21 v Ve
51 150 ! Vo 12 AL
11 1M ! 1. T N
101 ) J 1.1 1.1 n.13
100 1 1 t.” 1 a,
1 10 ! 1.3 o 7.7
Rl 190 ! 1.4 P 0.1
11 10 1 1.5 R 7,55
" 1nn ! 1.6 1.6 n.62
1 199 ! L.r 1.r 9,77
i 170 1 1.8 1.3 0.73
119 10 ! 1.9 1.9 n.92

For L, P/B) = 2 above solid lines aand = ! delow

Table IV-4

-125-




(®)

(q)
(21 e/t - 2171 t ti v
v 21 « 5/1 b 6 £
19° (A31404 1) © L | TR ?
€2s° (Firaeg 1) 0 52'2 £ Z 1
(vid s (v)d 1 g/o oq % ? 35V

21

My Javnts

4 (es61) Ava

Qe T n BUE feUI] JTIOS AACqP 0 = 1@,d ‘T 7C4
60 (12081 i €1 usl 19
6’0 [ R4 | 2! 0s1 s
t8'0 22271 1 1 09l (6]
96°U S0l l i1 w05 | 00S ) it l o | oSt} s
B8 0 ol i V10 005 | 00§ ‘e ! I 6 0sl Qs
1Y) Sutl 1 50" 0045 00s [ 3] 8887 C [ 8 § osl 0s
£€$°0 out I uu'l uly Gus tLo (e § 3 et oe
FTART} S6° 0 I 5670 | 005 ] UGy 90°v 99¢°C t 9] osl 0%
o (iU I UoTU {1 uus | LOS ¢ 8557 U i S | sl (8
tu'C Sy L 1 SET0 | wOs | uos V] (228 i ¥ ] Cst ce
0 08°0L { ug'0 | us (48] ¢ Eeee 1 1 ost us
0 Gi'u [ SC°0 | US| LS (r ¢ee’C 1 12 el 0s
L e 1 I youst) ce
16" v Sl { S¢Tl 00¢
(§°V 0c 1 l 0¢1 UG 31 1 n ol us
gu 5101 | sl ¢ S(ET 1 1 >"5 | oGl us
67U G l oLl 00 (TN | I L'l 1A (s
¥9°U Sl l LT (4 KT [ s’ oLt ous
Rl out [ et oud i i t | ool [
10 U 1 5670 | vl S{g’ 0 i [ ool oS
U wb { [T B St i t Lol U5
[ Fe i CIANUN IUTY 5’ C 1 cleoi] ¢S
UL 0 ¢ i [NV VA LT ¢ 1 1 utl s
0 EYRN ] i 5070 Uty
t i [ W Le
I 1Y { v | oel S i st | oS (8
t6°0 el ! € ] csl [ Q1 | V1] oS ¢S
ol ] 5o | wer st | v st ]os | oos
v’ o i [ 4 ¢ e csl 501 i IR 0s (89
970 64’0 1 P Let < [ < 0s us
V] SEvL 1 1 cel l I i 0s 0s
o.vY.y oY,V
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(b)

FARRELL (1976) p.28

SQUARE Law

4 412, 8q = 7

ag < bg = 0

@< .00), 8-.01

FOR L, P(A) = 0, P(8) » 1

#(8.t) PLA.t)
NORMAL NORMAL

t | SIMRATION |\ poronimation) SIMRATION | (s sorax imatfon)
80 .01 .00 .0l -00

160 a7 .18 -18 -08

240 .40 .38 .26 -23
280 47 .46 1S .29
400 .58 .56 .36 By

Simylacion - 5000 replications.

Approsimacions - Faccell and Freedsan (1975}, .

FARRELL (1978) p.28
SQUARE_L AW

ety 10
dg * bg = 0O
a= 003, 8= .08

FARRELL (1976) 0.28

SQUARE_LAW

g "2, 09«4

W obpe0

a- .02, 8-.01

(a)

FOR L, PLA) = 0, P{B) = 1

FOR L, P(A) = 0, P(8) =1

r(s,t) P(A,t) p(s,t) P(At)
NORAL NORMAL NORMAL NORMAL
T SURRATION | ppprorimation) | SIMRATION | (\oornsimation) ] SIMRATION | (prozimation) || SIMUATION | (approximation)
0 .00 .00 .00 00 20 Ry .07 .01 .00
50 .96 .04 .00 00 10 .18 R .04 .ol
90 .30 27 .00 00 50 53 .48 .10 .05
120 .59 .87 .00 00 30 .63 .59 .15 .10
150 .1 .1 .00 00 100 .58 .66 .19 .15

Stavisvian - 3000 replicattons.

Approsimacions - Farreil snd Preedmen (197%).

Simulacion - 5000 ceplicetions.

Approsimacions - Farrell and Pceedman (1973).

Table IV-6
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LINEAR LAW p.599

WEISS (1963)

—~
A}
~

P(A) |

WEISS (1963) LINEAR LAW p.600Q

1.22

(h)

3

PR T

P

-

/
//
2 3 0+ 5 & ! 8

P(A)

|
O il

Figure IV-16
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LEE AND WANNASILPA (1972) p.25

LINEAR LAW
afF =bfF =0
INITIAL
FORCES P(8)
a9 bo = ,05, a= 05 | 8=.,1, a=.3 = .05, ¢ = .2
1 3 0.8750 0.57812 0.51200
2 6 0.9375 0.55505 0.57680
3 9 0.9672 0.54480 0.61740
4 12 0.9824 ¢.53871 0.64816
5 15 0.9904 0.53458 0.67329
6 18 0.9947 0.53158 0.69469
7 21 0.9970 0.52917 0.71339
8 24 0.9983 0.52727 0.73003
9 27 0.9991 0.52570 0.74501
10 30 0.9995 0.52437 0.75864
20 60 1.0 0.51720 0.85079
L for P(B) 1.0 0 0
Table (V-8
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LEE AND WANNASTILPA (1972) p.25

LEE and WANNASILPA (1968) p.33 NIXED LAN
MIXED LAW:
1.0 (A LINEAR, B SQUARE) ag = by = 0
a=f8=o0.0s
0.9 » 8, =g =0
0.8 L INITTIAL
' FORCES P(8)
| 3 by | B8=.05, a=.05
6.7 -
| 1 3 -
; 2 6 0.1600
o.8r 1 0.1348
“ 1o 9.3362
P(B) o - s 13 0.4536
] 6 18 0.5742
0.¢ - 7 21 0.6874
| 3 24 0.7833
03 - 3z 0.8582
| 10 3 0.9123
0z }
0 60 1.0
0.1 r
L for P(8) 1.0
[+]
[} 1 2 3 4 S 8 ?
2 3% Table TV-9
TR

Figure IV-=-21
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SPRINGALL {1968) pp,168,169
SPRINGALL MODEL

m 25, 909, 8210, §= v=2.0, ag =bg = 0

[20 A0 bg | P(8)
5 0.53560
10 0.55793 (a)
i) 0.58710
30 0.60847
1 0.62600
50 0.64112
60 0.65453
SPRINGALL (1968) MODEL p.156
| 5
x.,T >
| '
'
T . m =5, q=0.9, 3.0, §+ v=2.0, af =bg = 0
2.0 ! ,/"
l (
» b
! ! P
2.6 4 . [
| ' 5 0.38567
Pta) t boszo, m::s. nz.s. e, 120, : w0 3.97080
ot b,20, G20.9,8:1.0, «2.0 R 9.39763 )
! 10 3.99979
! =120 10 1.99998
|
i B S——— |
c.at
|
| EUNGALL YRR~ 17T
- ¥ (%] 0
i N R INGAL. ¥ODE.
—_—

49 7 60, by + 60, 7 : 0.9, 8 1.0, y=2.0,5:..0
Figure IV-22

1 b » S
!'m, wd n, }T P(A)
===z ¥
i 1) 1.32513
: i ). 11638
X ()
i s 121
| 1 0.30832
i 1 9.30690
! 50 . 30637
J 50 0.30624
L

Table IV-10
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V. THE VARIANCE OF THE PROCESS

In this section standard deviations are shown directly in Figures V-l
through V-9 and Tables V-1 through V-h. The remainder of the section shows
state probability density functions and probability mass functions in various
forms. The pdf's and pmf's are given here even though they do not explicitly
display variance (or standard deviation) because they visually illustrate that
dispersion is usually very large.

Other sections contain distribution information which should also bhe
examined when variance is considered. These other tables and figures are;

(1) The Square Law; Figure II-l (gives 5th and 95th percentiles), II-2, TI-
3, (all the preceding are terminal distributions), [T11-1, [II-2 (the preceding
two are distributions functions of time-duration, TTI-3 (pdf or time-
duration), VI-3 through VI-12, and Tahles I[I-l, II-2(3),(b), (preceding two
are terminal), ITl~-l(a), (¢) (time-duration variances), VI-3, VI-4 and VI-5
(the last three are joint distributions at various times).

(2) The Square Law with draws; Table [[[-2 (pdf and df's of time-duration).
(3) The Linear Law; Table I[I-3 (terminal).

(4) The Weale Special Model; Table IT[-3(a) (time-duration), VI-h, and VI-7
(last two are joint distributions).

Particular care must he used in intecpreting the figures on stiate
distributions which are discrete as opposed to time-duration distributions
which are continuous. That is, they are all probabhilityv mass functions cven
though they are variously depicted as histograms or as continous. Only figure
V-23 is correctly portrayed. The histograms should he read as their heizht at
mid-points of the rectangles and the continuous curves only at integers on the
abscissa.

Also, the reader should be aware of the peculier manner in which Figures
V=12, V=13, and V-14 have heen prepared. These are frequency diagrams (not
histograms) and are to he read as having values onlv at the right hand edge of
each rectangle and whose magnitude is the rectangle height on the left,
However the x(t) and y(t) values (the vertical dashed lines) are located at
the middle of the corresponding rectangle. For example, in Figure V-12(a),
x(t) = 12 is located at 11.5, x(t) = 3 at 2.5 and so Fforth.

The examples shown in this section amply support the contention that
variance is indeed very important.
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CLARK (1969) SQUARE LAW p.12§

20

K]
(a)
Vv[a(t)]
te
o]
% 100 200 300 400 300 600 700 300
Time
CLARK {1969) SQUARE LAW p.126
Vv cti]
aL (h)
a =.0015
8 =.004
., =b =0
” { ! ! . ! | S
‘A 09 200 100 00 200 %00 100 900
Time
CLARK (1969) SQUARE LAW p.134
one 8,z b_:100000 o
i a:8:.008
qmlt— .' —{a 0*
(<)

KON - —% 10
)
R
DR matt)
tovcied Survivers “— Surviver Standard A
Deviatioam
i a0
290 210

Q
3 00 00 no -0
Time

Figure V-1
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FARRELL 11376) 0.27

SQUARE (AW

[

.go-m

dg 2 by « 0
ae.003, 8~.00

Ve m(t); 2= CVIACE)] i W= ®(t): o = V(O] 1
t LX} ug vy 9 9, 93 uy u2 vy L2 92 ”]j,‘
0 72 73 a2 L72 t.e8 1.22119.23 9,20 9.23 | 0.8% Q.91 .89y
40 .44 4,54 407 2.4¢ 2,32 2,37 |fe.7v 870 8.70 [ 119 L2l 17!
%0 .87 247 3. 3.08 2,28 2.38(/8.43 3.0 8.2 {1.30 l.0 L.28]
120 | -0.64 1.18 1I.18 .70 180 L.24 ({8.37 9.26 8.15 | 1.60 1.38 1361
150 | -3.18 0.55 V.60 439 130 L.50[|a.55 d.18 8.5 | 1.92 t.se Ll
SUBSCRLIPYS: —[
|
1 ~ Snow (1948! approximation. (lare adsorption probadilicies.; X
2 ~ Siswlacton (3000 caplications). :
1 - farrell & P (1975) 1 I
FARRELL 1 1976} 5.27
SQUARE L aw
a9 22, by et
ag # by = 0
a* .02, .0
j u s (e}, o= /¥A(L) u »Bg(t); 0 = 7Y[B(L)]
! i
to v “2 ¥3 It 12 ) vy vz vy a1 72 sl
P S S D P i 0.37 .74 0.82 {{3.35 3.36 3.2) | 9.84 0.8 0.82
10 RS ERA Y 7.98 1.26 2.9 0.93 [{2.97 2,94 284 {173 113 LO7
50 ; 1T 088 1.65 1.66 2.80 0.89 [12.93 2.7 2.5) | L9 1.32 t.28
30 }-J.Sl 3.85  9.52 2,15 0,77 a8t {292 2.5 2,37 | 2.3 L4237
(430 -2 .48 198 278 0.76 .76 {1).28 245 2.28 { 3.16 .49 .48
L
i sumscarers;
< - Snow ([948) approzimacion. ‘lero avsorpelom prodedilicies.)
| 2 * Simuiat(on /5000 ceplicaciona’.
© 1 - farrwll & Preedman ( (973 spprosimacions.
L
FARNELL LRV 5 T
3QUARE L AW
2 12, 00 = 7
4¢ = Bp = 0
ae=.003, 8- .01
( I we ®y(t); o« /VIATRST w e fyit); e o JYBCEIT
! t r“ s vy J 9 9 ay " u uy LY o 7y
Dsg ) ra9 a0 239 | 235 230 23s{lenn ass 4]0 159 1.60
‘ 160 4,22 454 ¢4 3.90 126 131113 143 333|243 210 2.08
[IRL 1) .38 )0 L2 .18 ).5¢ &2 fj2.82 291 2.7%] 358 232 2R
:250 2.3 104 101 1S 359 Lr2fl2.es 278 264 | 438 2.9 2.40
400 | -2.10 2.6% 2.87 {15.09 360 .Asll2.6r .70 2.52]8.2r 2.4 2.5
]
ryuucnrrs.»

i
J - Simulacion (3000 replications’,
!

- Partell & Procdaan (1973} appronimations.

- Snow /1948) agpronimstion. (lera ebsotprion prodadiliciee.)

Table V-1
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PEMA 108 LENOLZXY (1977 5.27

quane L
g0
ae g .08
t.1s
| R | Faisin3s }
L)) I H | o [ s-ais | H I o0 | is-aus|
(2059 187 (331 | 1.9a .0z8¢ 3.9¢ (.02 | 198 .0t02
(25,15) 4,42 (,350) | a.es 2068 439 (084} | 4.es 0137
(30,30 4.34 (.006) | 4.3a .0083 4.43 (.091) | s.88 .610¢
(39,401 5.56 (.18} | 5.6 .2083 s.66 (.27 | 5.63 .o018
(50,50) 6.27 (.031) | 6.30 0048 §.31 (.03 | 6.30 .co1e

3 * Simwiscian. 4000 FOPLICaCions. Yemaets in jscencheses ire 1tandard do=

‘i4cion8 of 78 § estimecer.

7 % Seria i lemoctay (I97Y) 11f%usion 4pproTInacion,
)
[

PERA u0 LENOCIKY (19771 0,28
SQUARE A4

DARYEN]
a« .2, 4+ .00

tei0
| VTR | R 10))

() | s f o lisaus | s [ o [isairs
(50.200 | 159 (.321) | 3.48 .25t 1.58 (.015)} 3.38 .arzs
(79300 | .03 (.38} | w51 o8t 4.6l (L)) an o217
(100,40} | $.26 (.0a9 | 5.2t .09 5.40 (.096)| s.43 .msc‘
(125.50) | 5.40 (L2100 | s.82 .0034 6.08 (.28 | 5.8 .0000

(250,100) | 8.25 (.238) | 8.2¢ L2012 s.62 (.nwLa.s’ 001

H ! 1
3 * Sismiscion. 4000 repiicscions. is are do=
viatisad of the 5 estiasces.
2 = Peria & Lormwnny (1977) 45CPusiom appten (aneian,
QAR (1969 o.127
SquARY L av
4 ey =9

“ W 3 $ ¢ SwAOT sesoT]
5 5 .00l 008 [s00. [ 1213
§ 5 .01 .00a (so0. 128 t.;oe

|
5 6 302 004 1500. t.1e0 2.908
$ 8 .06 004 ?500. .18 .18
4 4 .01 .00e %00. %0 1.414
4 3 .2018 .00e 500. 08 2.000
L} L} o002 .008  1500. l.uwa 2.448
] 8 00e .008  2300. .74 .79
12 § .00t .008 7308, 1.93¢ 2.138
12 ¢ .001S .00s 300. 4,009 1.662
12 § .002 .008  1500. 1.598 1.168
12 & .00e .008 1508 Ly .21

Table V-2
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WEALF (1972) pp.49,59
SQUARC LAW
dg = bg = 10
af = bf =0

a =0.05, B =0.025

T ma(t) mg(t) VLA(t)] viB(t)] p*
———
0.0 1n.0000M n.000m0 0.900009 n.000NN0 10000
1.) 9.756139 9.50€116 0.19426¢8 1.244208 1.n0on
2.1 9.574534 a,n2al77 n.97971¢ N.477944 1.23000
3.1 3.30437¢ 1.5953439 1.457¢¢ J.700587 1.10000
4.7 9.1796330 3.793433 L.a7 1.916762 L.AMNooe
5.1 3.390117 7.683F1R 2.30R400 1.124382 7.,9199a9
6.0 8.714879 7.2027294 Y.330e0n 1.273239 1). 99982
7.9 8.519897 £.771973 3. 666 1.52792% 7.9989)
8.1 2.375909 6.7491°7 IR 1.723310 N.29456¢
3.0 3.7227378 2,934 .0 1.9710382 1.9382%2
1.0 3.1791°8 5.5268712 1,361 *. 115856 7.85673
1.0 7.3453%] 3. 176132 S.3ghar *.317631 1.81°59
2.0 7.3227%1 4.731344 pLATTI 251199, 1.34387%¢
13.9 7.7008314 1.383592 6.5N8% A 17157858 1.75546
14.9 7.€055121 1.961n2F0) TLhoran YLAT 6 J.F6R24
15.0 7.31125n 3.582980 A RNAS 1.139114 0.56469
16.0 7.426352 31.72095713 3.6309F 1.2€24%9 .45064
17.0 7.3150737 2.840130 2,157 149 3.59543° 7,135951
13.0 7.284111 2.471352 23,7733 L RR LI 0.7€391
19.0 7.226994 21607 10.534967 1.1796293 0.19073

p*; probability mass not ihsorhed > the entry.

Table V-3
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g ——

CLARK (1969) p.154

SQUARE LAW (WITH STOCHASTIC ACQUISITION)

aF = bfg =0

3 by @ 8 t  /V[A(t)] /v(B(t)]

— ————]
6 6 .001 .004 5000. .284 1.325
6 6 .0015 .008 5000. .605 1.662
6 6 .002 .04 5000, .944 1.872
§ 6 .004 .004 5000. 1.816 1.816
8 3 .00l .00 5000. .202 1.528
8 8 .0cls .004  5000. 542 1.983
3 8 .002 .004 5000. .966 2.298
§ 3 .004 .004 5000. 2.242 2.242
12 .00l .008  5000. 2.208 1.879
12 6 .0015 .004 5000. 3.276 1.743
12 6 .002 .008 5000. 3.662 1.389
12 6 .00 .008 5000. 2.866 400

Acquisition Probabilities - (p = q = .85).

Table V=4
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CLARK (1969) p.128

LINEAR LAW
aF =bfF =0
a9 bg a 8 t /VTA(t)]  /V{B(t)]
6 6 .001 .004 1500. .241 1.346
6 6 .0015 .004 1500. .530 1.642
6 6 .002 .004  1500. .840 1.811
6 6 .004 .004  2500. 1.678 1.678
8 8§ .001 .004  1500. .158 1.571
8 8 .0015 .004 1500. .441 1.954
8 8 .002 .004 1500. .808 2.192
8 8 .004 .004  2500. 1.990 1.990
12 6 .001 .004 1500. 1.283 1.723
12 6 .0015 .004 1500. 2.271 1.743
12 6 .002 .004 2500. 2.987 1.493
12 6 .004 .004  1500. 3.120 .565
Table V-5

-14b=




SPRINGALL (1968) p.158
SPRINGALL MODEL

my =5, a=0.9, 8230 6=2.0,y=2.0

3 = b = 0
by = ag P(8) v(8(=)) V{A(=)]
| 5 0.88567 2,436 0.430
W 1.37080 5.522 0.168
{
29 P 9.99763 11.173 0.018 (a)
P30 0.99979 15.520 0.002
! 10 1.99998 21.314 0.000
59 1.30000 27.101 0.000
50 1.30000 32.387 0.000

SPRINGALL (1968) p.159
SPRINGALL MODEL

2 =50, by =40, m, 250, a=8=1,yvy=6=10
™

ag = by P(8) VglB(=)]

b 0.14455 4.770
' ! 0.14180 4.538
2 0.13900 4,311

3 0.13321 3.869 (b)
6 0.12715 3.446
8 0.12082 3.082
10 0.11820 2.659
20 0.07620 1.083
30 0.03071 0.192

Table V-6
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GAFARIAN and ANCKER (1984) p.I-17
SQUARE LAW

ao =2, b o::1

E model Is erlang (2) on A side

and ned on B side - GR
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Figure V-6
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pib, 1)

0.!1

JAMES (1981) SQUARE LAW .27

a=8=0.2
Nei=ey=0: stor=y(s1=0

[Jee=ve=s : stmr=yior=3
THaE | =8

{-.a,:to ['—

S

-

0.5 -1

=\ NN
10 9 '] S 4

N~

‘.%/7/
o %

40D

E} e[ats) |a wins]=€[8(s) |8 wins]= 5.72

C:’ €[ais) |a wins) -£[81351 |8 wing]=a.70

JAMES (1981) SQUARE LAW p.4J

o [+]
a=4d4=0.2
0.4 T 8, =p, =0
ple.®y 0.3+
or
plb. D) 0.2_1
0.1 4
o > A A
3 2 1
an
.0=‘ 00:2
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0.4 4
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-] e A e, k. -y .
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e
MARGINAL OISTRIBUTIONS ot t = @©

Figure V-~10
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KARR (1975a) SQUARE LAW p.24
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KARR (19753} SQUARE LAW p.25
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Figure V=11
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HARTLEY et al (1982) SQUARE LAW Fig 3

a=8=as
SIMULATION (500 REPLICATIONS)
8,3by =15
FREQ. -~ =~ — — &{t) = NUMBER SHOWN = y(t) ., =8,=0
\ . =By =
180 4 P(A) =0.5
140 4 a=0
\ZOJ
100 4
80 <
(a)
80 -
40
204
s 10 15
NUMBER OF B SURVIVORS
2= NO. OF AEPLICATIONS WHICH HAVE NOT TERMINATED EARLIER
HARTLEY et al (1982) SQUARE LAW Fig 4
SIMULATION {500 REPLICATIONS)
———— YUy = NUMBER SHOWN
FREQ.
}
160 A a=4 a==3 e=1 e==0
140
120+ u: ol ls o.}. a=e.5 §=
| ! a, =S, b, =18
100 - l ! ! Lo e
| f 1 ! LA =b'=0 (b)
20 | | | L
! | | | P(B)= 48
i l |
40+ | I | L
) l {
20 ~ | | ‘L
| | V' aw )
g T T T Y Lo T L oS — - R | 1
s 10 1% s 10 18 s 10 1S 5 10 1s S 10 15

NUMBER OF 8 SURVIVORS

Q=N OF REPLICATIONS WHICH MAVE NOT TERMINATED EARLIER

Figure V-12.
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HARTLEY et al (1982) SQUARE LAW Fig §

FREQ. SIMULATION (500 REPLICATIONS)

——— z{t)= NUMBER SHOWN

200 A
b=9 b= b=0
180 T T
“0'1 a=ss f=0.5
140 1 G =S, b, =18
120 4 fe=br =0
P(A)=0.34
100 4
uow (a)
80 4
40
4
20 763
12345 12348
NUMBER OF A SURVIVORS
. OF REPLICATIONS WHICH HAVE NQT TERMINATED EARLIER
HARTLEY ot al (1982) SQUARE LAW Fig 6
SIMULATION (300 REPLICATIONS)
————— y(1)= NUMBER SHOWN
FREQ.
' :
180 4 a=5 T a =1 + ea=0
160 + | |
i t | a=8=0s
. T.
140 4 8.7 | 7} Il: .« =7.0,=10
[
120 4 [ | L | % =B =
: ' : p(B)=0.9 (b)
100
b | i l
| |
80 | |
i |
60 < | i | |
| ! | |
1 | I |
40 <4 | i ] |
{ { | |
204 | 1 I !
1 1 | |
®l @ L L @ _L
+ ——rd- ——— ——r—t— r——rir—t—
2464810 2 46810 2 4 8810 24 68 810

NUMBER OF 8 SURVIVORS

(®)=N0. OF REPLICATIONS WHICH HAVE NOT TERMINATED EARLIER

Figure V-13.
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HARTLEY et al (1982) SQUARE LAW Fig 7

SIMULATION (500 REPLICATIONS) a=g=o0.5

meo. || 000 m————— (1) = NUMBER SHOWN 0, =7 b,=10

L lf::b'=0
160 I P(A)=0.1
140-1 b=28 b=¢6 b= 4 b=2 b=0

! 1 | | [
120 - | 3.6 _LO J_O _LO J-O

lI : { | |
| | |

B T T T T
i I | |

so | 4|— + + +
! ! {

s0 1 1 1 1
] I | ]
40 2t ‘ ! I I

| T T T T
i | { | |

201 : -l+ + + +

| ! ||

T lﬁo.—; Y ] r—%T mg l ‘\@ ) g J{gl)j-l—‘-‘ l(S‘/

2 4 8 8 2 4 6 8 2 4 86 8 2 4 6 8 2 4 6 8

NUMBER OF A SURVIVORS

®= NO. OF REPLICATIONS WHICH HAVE NOT TERMINATED EARLIER

Figure V-14.
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CRAIG (1975) SQUARE Law p.30

CRAIG (1975) SQUARE Law p.29

ple.b,38.5)

pla.b,2.0)
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Figure V-15.
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CRAIG (1975) SQUARE LAW p.33
pla.b,155.5)

Figure V-17.
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CRAIG (1975) SQUARE LAW p.60

CRAIG (1975) SQUARE LAW p.59

pla,b,120.8)

pl{s.b,00)

(b)

Figure V-19.
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£920°0 §920°0 81 318 v{10°0 {1070 B¢ $100°0 {000°0 86
6520°0 0920°0 6l 6¢ v£20°0 262070 6L $000°0 2000°0 66
15200 2520°0 02 ov {0£0°0 20£0°0 08 2000°0 00t (®)
(1€) b3 19vx3 (9) (1€) b3 113 (a) (1€) b3 19vx3 (q) (1) b3 19vx3 (q)
woJ4 SHOALAMNS wo. 4 SHOATAWNS w4y SYOAIANNS 0.4 SUOAIAMNS
IAVHIX0¥ddV 0 YIBWW ILVHIXOY¥ddY 30 YIBHN ER LR E el ) ILVHIXOYdAY 0 YIBWW
(= *a *0)d (= “q *0)d " (= ‘q oM (= *a *o)d
9D

0=3q = Je 0= 43q= e

ob = 99 = O 001 = Oq ‘0§ = O

Hv7 Juvnbs ' Mv 35vnbs

9t ¢ (K61} SIMIY uny

SU D (be61) SIMIY UNY JAY

Table V-8,
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WEALE (1976) pp.69, 70

SQUARE LAW

dg = bo = 10

ac = 2, bf =3
a=0.5 8=0.25

P(A) = 0.776303, P(B) = 0.030909, P(D) = 0.192788

DRAWS OCCUR IF:

a=2,b<6or
b=3,ax<5

p(a,b,®) x 1,000,000

A VICTORY B VICTORY
b a P a b P
3 10 124,751 2 10 1,506
3 9 199,438 2 9 5,092
3 8 194,456 2 8 9,882
3 7 151,938 2 7 14,429
3 6 105,720

DRAN LEVEL DRAW LEVEL
b a P a b P
3 5 69,044 2 6 17,551
3 4 43,447 2 5 18,646
3 3 26,459 2 4 17,640

Table V-9
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KARR (1975b) LINEAR LAW p.2s

\

(a)

(b)
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KARR (1975p) LINEAR LAW p.26
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WEALE (1975) pp. 64,65
SPECIAL MODEL

P(A) = .992809
P(B8) = .000018
P(0)

1]

.007173

DRAWS OCCUR [F:

a=2,b<6
or

b=3,a<s5

ATTRITION COEFFICIENTS:
A SIDE = a(0.05 + 0.05b)
B SIDE = b{0.025 + .005a)

p(a,b,®) x 1,000,000

A VICTORY B8 VICTORY
B R —
b a p a b P
3 10 425,276 2 . 10 )
3 9 336,501 2 9 | 1
3 8 156,656 > s 5
3 7 56,612 2 7 2
3 6 17,764 }
L [ A ]
DRAW LEVEL ORAW LEVEL
b a P a b f P
3 5 5,156 2 6 27
3 4 1,446 2 5 52
3 3 406 2 4 87
—- _— _
Table V-10
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e e

SPRINGALL (1968) p.170
SPRINGALL MODEL

%210, by =10, m =5 0209, 851, ys2, §22

a - b, =Q
b plo,b, =)
{ 0.09486
2 0.09809
] 1,09547
3 1.08619
) 1.07147
5 108279
0.01360 (a)
3 3.M737
oY 3.00652
f o 2.00135
TN N
SPRINGALL (1964) p.132
SPRINGALL MODEL
a,,-ls,u,-zo,.z-s. nzns.g-o.%.'a-l.m. y * 2.00, § = 2.00
4 - b’ =0
P(8) = 0.85503
b plo,b.=}
i 0.04072 i el
: 0.94855 ] Lo
3 0.05657 i s vl
3 U.06424 ' ! TRRT
5 BRITOL Y u [
6 7.37602 P I T8N
? 301822 ’ soAdy.t)
L 2.07450 ! LN, (b)
9 1.37508 b tomtt
10 0.06838 1 TR
11 0.05901 1 0.00089
12 0.04783 2 AR 101 0]
1 0.03502 13 9.00003
14 0.02487 14 J.00000
15 0.01548 15 0.00000
16 0.00842 ’
12 0.00388
- 18 0.00142
19 0.0003?
20 0.00005

Table V=11
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SPRINGALL (1968) MODEL p.172
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VI. MISCELLANEOUS RESULTS

Two kinds of results are presented in this section. They are: (1)
examples of correlation between A and B survivors, and (2) some new results
on combining small fire-fights to describe large battles.

In Figures VI-1 and VI-2 and Tables VI-1 through VI-7, the figures
provide visual evidence of correlation (or equivalently covariance) and the
tables give actual computed values. The significance of this is that
covariance (correlation) is the term whose existence (and magnitude) causes
the Linear Law and any model in which it is a component (e.g. the Weale
Special Model and the Springall Model) to have differing L and SL mean value
functions. Other consequences of correlation have not been explored.

In the remaining part, (figures VI-3 through VI-12), two situatfons are
examined. Both include comparisions of L with SL fire-fights in which a large
number of combatants either engage in a standard Square Law battle or the same
total initial numbers engage in several identical, simultaneous and
independent Square Law fire-fights. The two situations are: (1) 48 on each
side for the large battle and 8 smaller battles with 6 on each side and; (2)
96 on each side for the large battle and 16 smaller fire-fights with 6 on each
side. The principal results are that the L model has identical outcomes no
matter how the battle is sub—-divided, but the large SL battles differ
considerably from the several smaller battles. This is true both for the mean
value functions and the standard deviations. This substantiates the position
that the compartmentalized nature of real combat cannot be safely ignored.
This is some very early work on the problem. Much more needs to be done
before any clear picture of the seriousness of this situation will emerge.
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SERLN AND LEHQCIVe 13T 0007

SQUARE LAW

afg = be = 0
a=8 .05
t =15

CORRELATION [A(t) B(t)]

(29.50) s : 0 5-DI/S
[0 L 598 108 -.686 | ous |
123,050 | -.588 ()15} -.586 L .0029
] 133,30) ‘ -.583 [.201) -.686 | 0048
L 140,30) i -.589 {.206) -.686 .0044
| 150,500 J -.587 (.009) -.686 .0015

S = S:muluc:ion, 6000 cteplicacsons. Vumbers in parenchesas arce
standdarl Jevidcions of the S estimates.

D = Perla & Lehoczky (1377} Jiffusion approximation.

d('bfﬂo
3= 77%.8 = 730

t 10

B CORRELATION (A(t) B(t)]
{294bg) { s 0 {$-01/5

=

50.20) ’ -.512 (N -.526 i 0273
:%s, 30 [ -.934 ".008) -.526 ILY
09,400 \ -.5487 0 .123) -.526 .)3184
i 125,50) b Ls1a .0 -.526 154
’l(:so.xoox J‘ -.527 {.006) -.526 L0019

S = Simylation, 6000 replications. Numders in parentheses are
scandard deviations of the S estimates.

O » Perla & Lehoczhy (1977) diffusion spproximation.

Table VI-1.
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WEALE (1972) pp.349,50
SQUARE LAW

dg = bo = 10
af = bg =0
@ =90,05 B8 =0.025

| 1 Cov7A(t) B(t)] p*
FO.O 0.000c000 1.00000
1.9 -N.012350 1.00000
2.9 ~1.048853 1.00000
3.9 ~N.1087138 1.00000
4.1 ~-0.191621 1.00C00
5.9 ~0.796993 7.99999
6.0 ~N.474359 n.999¢8
7.1 -0.6733847 1.99290
8.1 -0.7451354 }.39466
9.9 ~0.939006 n.98252
10.0 -1.155060 J.95673
1.0 -1.%036807 7.91259
12.0 ~1.656076 0.34826
13.0 -1.942230 1.7654%
14.0 ~2.253173 0.A6884
15.0 -2.58985?2 0.56469
16.0 -2.953362 N.45964
17.0 -1.744945 7.35954
13.0 ~3.766006 N.26391
19.0 -4.218110 0.19073
p*; probability mass not ibsorhed > the entry.

Table VI-2
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v[A(t)L]

YEALE (1971) pp.l14,15

SCUARE AW

af *br =0
l‘(t) = 9.756,

(t) = 9.506

« 2440079, ¥]B(t)] = .4942664

ov[A(t), 8(t)] = -.0123502

ag = 10,a = 0.05000
8 = 0.02500

b * 10.

t=1.0

p(a, b, t) x 1,000,000

w9 I § § |s|a|3)2]1 o]
783,725 | 190,910 | 23,335 | 1,908 | 117 |6 {a|afa |00
! v ]
j 517, $72,367 | 121,096 | 15,522 | 1,326 | 35 | s lafala |0 |0
| [ 331,090l 229,160 | 55,179 | 6.229 @3 | 221 ]3jofjala]lo
I ! 50,544 12,520 | 1.28¢ 37 slajafjofaloio
[ 12,285 10,218 1,385 172 10 of{olofofo|ola
[ 1,522 1,293 212 17 l ojo|ojojojola
I3 151 131 19 L 0 alatalojaejoio
3 3 1 1 9 9 of{olalolojo|o
] l t 9 0 0 ojololajolaifo
2 0 0 0 0 0 ojalotofofofa
! 0 q 0 a 0 ojofo]ofofofo
a a4 ¢ 0 9 0 ojofjaelolofo]a
WEALE '1971) pp.16,17
SQUARE AW
1p e by = 0
w (t) = 7.945, ap(t) = 5.153
v[A(:)L- 2.3096855, V[B(t)l'- 5.0573893
v(A(t), B(t)] 5 -1.l482826
s ° 10, @' 0.05000
b = 10, B = 0.02500
t = (1.0
p(a, b, t) z 1,000,000
T T ’ 8 7 5 s | e N | o
b jus.us 261,368 | 253,736 | 174,952 | 95.197 | 43.233 | 16,965 | 5,389 | 1.839 523 | 180
10 10.215 261 9sa | 1,756 | 2,146 | 1,767 | 1.142 981 162 212 36 15
9 43,528 || 1.55¢ | s.,i57] 9,964 | 9,765 | 7,928 s.111| 2,720 1,227 ar? 162 54
8 96,281 || 5,235 | 15,387 | 22,705 | 21,799 | 15,728 | 8,376 { $,097 | 1,583 520 136 34
7 146,394 [[11.087 | 29,168 | 17,792 | 32.168 | 20,414 | 10,032 | 3.993 | 1,315 162 38 19
5 172,545 ||17,488 | 40.980 | 47,164 | 15,412 ( 19,928 | 8,261 { 2,315 783 179 18 5
5 166,016 22,137 | 45,765 | 46,232 | 10,289 | 14,397 5,252 | 1,519 153 6 19 i
4 135.909 [|23.357 | 32,259 | 37,173 | 21,071 | 3.598 | 2.664 546 124 19 2 0
3 97,146 121,123 | 13,126 | 25,125 | 12,195 | 4,221 ] 1,097 22 34 s 0 0
2 61,773 16,715 | 22,449 | 18,501 | 9,949 | 1,122 3169 60 7 1 9 0
t 35,442 f11,758 | 13,314 7,211 2459 585 101 13 t 0 0 0
0 34,152 15,347 | 12,405 | 4,312 | 1,239 218 28 3 0 0 0 0
Table VI-3
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WEALE (1971) p.13,19
SQUARE LA

Adg = br =0
ll(t) = 6.578, l,(t) = 0.631

Y[A(t) = 7.0306303, v 8(t)] « 2.7311309
Cov[A(t), 8(t)] = -3.2008005
a, = 10, a’= 0.05000
b, = 10, 8 = 0.02500
t=41.0
p(a, b, t) x 1,000,000

a 10 9 8 7 6 5 4 3 2 1 0
' b 93,923 | 170,519 | 184,007 | 156,196 | 116,825 | 82,161 | 56,906 | 40,075 | 28,981 | 21,238 | 49,170
} 10 898 0 0 0 ] 0 0 0 0 2 7 889
, 9 3,302 0 0 0 0 0 0 2 7 23 71| 3,200
X 8 6,919 0 0 0 0 1 3 13 £y 137 a1 | 6,378 (a)
| 7 10,999 0 0 0 1 a 20 72 214 524 | 1,054 9,109
6 14,992 0 0 1 5 2 9 298 7e| 1,438 2,315} 10,112
5 18,849 2 0 4 23 102 339 884 | 1,826 | 2,982 | 3,783 | 8,905
3 22,877 0 2 13 93 350 990 | 2,160 | 2,665 | 4,787 | 4,678 6,133
, 3 27,380 1 10 69 312 9971 2,370 | 4,278 | 5.862 | 5.982 | 4,3a7| 1,154
; 2 32,393 3 37 229 84| 2,385 | 4,708 6.906 | 7,467 | s.750 | 2.931| 1,094
: 1 37,665 12 127 662 | 2,152 4,823{ 7,766 ] 9,087 | 7,459 | 4,101 | 1,319 196
i 0 823,724 193,907 | 170,342 | 183,025 | 152,726 | 108,139 | 65.870 | 33,256 {12,814 | 3,254 393 0
|
!
i
i WEALF '171Y pp o0,
X :
) SQUARE L AW .
i
l afr = bg =0
i my(t) = 6.486, my(t) = 0.435
' v(A{r) = 7.91857C9, v B(t}] » 2.3169327
' Cov[A(t), B(t}] = -2.3030826
: a, * 10, a = 0.05000
by = 10, 8 = 0.02500
t = 80.0
! p(a, b, t) x 1,000,000
a 10 9 3 7 6 s 4 3 2 1 0
b 93,921 ( 170,504 | 183,914 | 155,817 | 115.706 | 79,602 | 52,189 | 32,850 | 19.621 | 11,240 | 84,636
10 896 0 0 0 0 0 0 0 0 0 0 896
9 1,278 0 0 0 0 0 0 0 0 0 0| 3,215
8 6,759 0 0 0 0 0 0 0 0 0 ol 6.759
7 10,367 0 0 0 0 0 0 0 0 0 1 {10,366 (b)
6 13,114 0 0 o 0 0 9 0 0 1 7 13,106
5 18,376 0 0 0 0 0 0 0 0 5 42 | 18,330
4 13,978 0 0 0 0 0 0 0 3 26 181 {13,767
3 12,166 0 0 0 0 0 0 2 16 120 603 [ 11,4268
2 9,601 0 0 0 0 0 1 9 77 432 1,504 | 7,578
1 7,314 0 0 0 0 0 s a7 297} 1,198 2,630 | 3,136
0 908,155 193,921 | 170,504 | 133,914 | 155,817 | 115,706 | 79,596 | 52,131 | 32,456 | 17,338 +,2n1 0
Table VI-4.
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8 SURVIVORS

KARR (1975b) LINEAR LAW p.14
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TRAC-WSMR-TD-7-88

THE VALIDITY OF ASSUMPTIONS STUDY
UNDERLYING CURRENT USES OF GIST
LANCHESTER ATTRITION RATES

THE REASON FOR PERFORMING THE STUDY was to show that many of the prevailing
understandings concerning the relationships among the Lanchester, Stochastic
Lanchester, and the General Renewal models of combat are erroneous. and to
collect, organize, and reduce to common notation almost all known tabled results
and curves of particular examples.

THE PRINCIPAL RESULTS of this study were:

(1) A1l Lanchester model and Stochastic Lanchester model mean value
equivalent pairs differ for all times except at possible crossing points.
These differences may be very large. ’

(2) At least for the Square Law, the Lanchester model trajectories are
neither a universal upper or lower bound of the Stochastic Lanchester model
mean value trajectories.

(3) Even near time zero, the Lanchester and Stochastic Lanchester model
mean value trajectories may differ considerably (they do not differ materially
for)the Square Law and the sequence of one-on-one duels version of the Linear
Law).

(4) For the Linear Law, the Square Law, the Mixed Law and the Square
Law with continuous reinforcements there is a Law of Large Numbers on suitably
transformed spaces. However, for untransformed spaces this does not apply,
for it can be shown that as the initial force sizes tend to infinity the
differences between Lanchester model and Stochastic Lanchester model mean
value trajectories tend to zero, or they may even tend to a constant or
infinity.

(5) Blackwell's Theorum does not imply that individual combatants with
general interfiring times tend to have negative exponentially distributed
interfiring times. This is even more strongly the case for terminating
processes.

(6) The Palm-Khintchine Theorem does not imply that superposing a large
number of combatants with general interfiring times will yield a process with
negative exponentially distributed interfiring times. This can only be
approximately correct for large numbers and for very large interfiring time
means. Again, the Theorem is only valid for non-terminating processes.

(7) Nonhomogeneous Poisson processes do not, in general, approximate
general renewal processes.

TRAC Feorm 68
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(8) The Stochastic Lanchester model process variances are generally
quite significant and can be important for large force sizes, even near time
zero. In addition, general renewal model process variances are significantly
different that Stochastic Lanchester model process variances.

(9) The other Lanchester model measures, (a) expected number of survivors,
(b) expected time duration of the battle, and (c) probability of winning are
even less reliable predictors than the mean value trace.

(10) The basic assumptions of the Stochastic Lanchester models, as well
as the general renewal model, cannot hold for large numbers of combatants.

THE MAIN ASSUMPTIONS were that:

(a) A1l pre-combat decisions have been made and the battle goes forward
until terminated by the action itself or by tactical decisions.

(b) The true model which is to be approximated is termed a General Renewal
model.

(c) Each marksman fires until he is killed or makes a kill.
(d) The ammunition supply is unlimited.
(e) A1l fire independently.

THE MAJOR RESTRICTION 1is that the general renewal model is a superposition
of many terminating renewal processes.

THE SCOPE OF THE STUDY is to show that the basic assumptions of current combat
models do not hold for large numbers of combatants.

THE STUDY OBJECTIVES are to show that many factors cause large scale battles
to be a number of simultaneous and/or sequential smaller scale engagements
and that use of current deterministic Lanchester models is incorrect.

THE BASIC APPROACH is two fold. First the Lanchester model applications are
examined to show fallacies. Second all known tabled results and curves of
particular examples are provided to support the theoretical discussion.

THE STUDY SPONSOR is TRAC-WSMR.

THE STUDY PROPONENT is TRAC-WSMR.

THE ANALYSIS AGENCY is TRAC-WSMR.




